Difference between revisions of "1995 AIME Problems"

Line 13: Line 13:
  
 
== Problem 3 ==
 
== Problem 3 ==
 +
Starting at <math>\displaystyle (0,0),</math> an object moves in the coordinate plane via a sequence of steps, each of length one.  Each step is left, right, up, or down, all four equally likely.  Let <math>\displaystyle p</math> be the probability that the object reaches <math>\displaystyle (2,2)</math> in six or fewer steps.  Given that <math>\displaystyle p</math> can be written in the form <math>\displaystyle m/n,</math> where <math>\displaystyle m</math> and <math>\displaystyle n</math> are relatively prime positive integers, find <math>\displaystyle m+n.</math>
  
 
[[1995 AIME Problems/Problem 3|Solution]]
 
[[1995 AIME Problems/Problem 3|Solution]]

Revision as of 21:58, 21 January 2007

Problem 1

Square $\displaystyle S_{1}$ is $1\times 1.$ For $i\ge 1,$ the lengths of the sides of square $\displaystyle S_{i+1}$ are half the lengths of the sides of square $\displaystyle S_{i},$ two adjacent sides of square $\displaystyle S_{i}$ are perpendicular bisectors of two adjacent sides of square $\displaystyle S_{i+1},$ and the other two sides of square $\displaystyle S_{i+1},$ are the perpendicular bisectors of two adjacent sides of square $\displaystyle S_{i+2}.$ The total area enclosed by at least one of $\displaystyle S_{1}, S_{2}, S_{3}, S_{4}, S_{5}$ can be written in the form $\displaystyle m/n,$ where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m-n.$

AIME 1995 Problem 1.png

Solution

Problem 2

Find the last three digits of the product of the positive roots of $\sqrt{1995}x^{\log_{1995}x}=x^2.$

Solution

Problem 3

Starting at $\displaystyle (0,0),$ an object moves in the coordinate plane via a sequence of steps, each of length one. Each step is left, right, up, or down, all four equally likely. Let $\displaystyle p$ be the probability that the object reaches $\displaystyle (2,2)$ in six or fewer steps. Given that $\displaystyle p$ can be written in the form $\displaystyle m/n,$ where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers, find $\displaystyle m+n.$

Solution

Problem 4

Solution

Problem 5

Solution

Problem 6

Solution

Problem 7

Solution

Problem 8

Solution

Problem 9

Solution

Problem 10

Solution

Problem 11

Solution

Problem 12

Solution

Problem 13

Solution

Problem 14

Solution

Problem 15

Solution

See also

Invalid username
Login to AoPS