1999 AIME Problems/Problem 3

Revision as of 16:47, 3 July 2007 by Altheman (talk | contribs) (Solution)

Problem

Find the sum of all positive integers $\displaystyle n$ for which $\displaystyle n^2-19n+99$ is a perfect square.

Solution

If the perfect square is represented by $x^2$, then the equation is $n^2 - 19n + 99 - x^2 = 0$. The quadratic formula yields

$n = \frac{19 \pm \sqrt{361 - 4(99 - x^2)}}{2}$

In order for this to be an integer, the discriminant must also be a perfect square, so $4x^2 - 35 = q^2$ for some nonnegative integer $q$. This factors to

$(2x + q)(2x - q) = 35$

$35$ has two pairs of positive factors: $\{1,\ 35\}$ and $\{5,\ 7\}$. Respectively, these yield $9$ and $3$ for $x$, which results in $n = 1,\ 9,\ 10,\ 18$. The sum is therefore $038$.

See also

1999 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions