Difference between revisions of "2002 AMC 12A Problems/Problem 6"

(New page: ==Problem== For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>? <math> \mathrm{(A) \ } 4\qquad \math...)
 
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12A Problems|2009 AMC 12A #6]] and [[2002 AMC 10A Problems|2009 AMC 10A #4]]}}
 +
 
==Problem==
 
==Problem==
 
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>?
 
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>?
Line 6: Line 8:
  
 
==Solution==
 
==Solution==
<math>m \cdot 1 \le m + 1</math> for <math>n=1</math>
 
  
<math>m \le m + 1</math>
+
For any <math>m</math> we can pick <math>n=1</math>, we get <math>m \cdot 1 \le m + 1</math>,
 +
therefore the answer is <math>\boxed{\text{(E) infinitely many}}</math>.
 +
 
 +
==See Also==
 +
 
 +
{{AMC12 box|year=2002|ab=A|num-b=5|num-a=7}}
 +
{{AMC10 box|year=2002|ab=A|num-b=3|num-a=5}}
  
<math> \Rightarrow \mathrm{(E) \ }</math> infinitely many
+
[[Category:Introductory Algebra Problems]]

Revision as of 07:56, 18 February 2009

The following problem is from both the 2009 AMC 12A #6 and 2009 AMC 10A #4, so both problems redirect to this page.

Problem

For how many positive integers $m$ does there exist at least one positive integer n such that $m \cdot n \le m + n$?

$\mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ }$ infinitely many


Solution

For any $m$ we can pick $n=1$, we get $m \cdot 1 \le m + 1$, therefore the answer is $\boxed{\text{(E) infinitely many}}$.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions