Difference between revisions of "2017 AMC 10B Problems/Problem 22"
m |
(→Solution 2) |
||
Line 9: | Line 9: | ||
Notice that <math>ADE</math> and <math>ABC</math> are right triangles. Then <math>AE = \sqrt{7^2+5^2} = \sqrt{74}</math>. <math>\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}</math>, so <math>BC = \frac{20}{\sqrt{74}}</math>. We also find that <math>AC = \frac{28}{\sqrt{74}}</math>, and thus the area of <math>ABC</math> is <math>\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | Notice that <math>ADE</math> and <math>ABC</math> are right triangles. Then <math>AE = \sqrt{7^2+5^2} = \sqrt{74}</math>. <math>\sin{DAE} = \frac{5}{\sqrt{74}} = \sin{BAE} = \sin{BAC} = \frac{BC}{4}</math>, so <math>BC = \frac{20}{\sqrt{74}}</math>. We also find that <math>AC = \frac{28}{\sqrt{74}}</math>, and thus the area of <math>ABC</math> is <math>\frac{\frac{20}{\sqrt{74}}\cdot\frac{28}{\sqrt{74}}}{2} = \frac{\frac{560}{74}}{2} = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | ||
− | ==Solution 2== | + | ===Solution 2=== |
We note that <math>\triangle ACB ~ \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | We note that <math>\triangle ACB ~ \triangle ADE</math> by <math>AA</math> similarity. Also, since the area of <math>\triangle ADE = \frac{7 \cdot 5}2 = \frac{35}2</math> and <math>AE = \sqrt{74}</math>, <math>\frac{[ABC]}{[ADE]} = \frac{[ABC]}{\frac{35}2} = \left(\frac{4}{\sqrt{74}}\right)^2</math>, so the area of <math>\triangle ABC = \boxed{\textbf{(D) } \frac{140}{37}}</math>. | ||
Revision as of 22:38, 19 February 2017
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution
Solution 1
Notice that and are right triangles. Then . , so . We also find that , and thus the area of is .
Solution 2
We note that by similarity. Also, since the area of and , , so the area of .
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.