Difference between revisions of "2018 AMC 10A Problems/Problem 10"

m
(Solution 10 (Solution 1 but alternate))
 
(55 intermediate revisions by 27 users not shown)
Line 1: Line 1:
Suppose that real number <math>x</math> satisfies <cmath>\sqrt{49-x^2}-\sqrt{25-x^2}=3</cmath>. What is the value of <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>?
+
==Problem==
 +
 
 +
Suppose that real number <math>x</math> satisfies <cmath>\sqrt{49-x^2}-\sqrt{25-x^2}=3</cmath>What is the value of <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>?
  
 
<math>
 
<math>
\textbf{(A) }8 \qquad
+
\textbf{(A) }8\qquad
 
\textbf{(B) }\sqrt{33}+8\qquad
 
\textbf{(B) }\sqrt{33}+8\qquad
\textbf{(C) }9 \qquad
+
\textbf{(C) }9\qquad
\textbf{(D) }2\sqrt{10}+4 \qquad
+
\textbf{(D) }2\sqrt{10}+4\qquad
\textbf{(E) }12 \qquad
+
\textbf{(E) }12\qquad
 
</math>
 
</math>
==Solutions==
 
=== Solution 1===
 
  
In order to get rid of the square roots, we multiply by the conjugate. Its value is the solution.The <math>x^2</math> terms cancel nicely. <math>(\sqrt {49-x^2} + \sqrt {25-x^2}) * (\sqrt {49-x^2} - \sqrt {25-x^2}) = 49-x^2 - 25 +x^2 = 24</math>
+
==Solution 10 (Solution 1 but alternate)==
 +
 
 +
We let <math>a=\sqrt{49-x^2}+\sqrt{25-x^2}</math>; in other words, we want to find <math>a</math>. We know that <math>a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.</math> Thus, <math>a=\boxed{8}</math>.
 +
 
 +
~Technodoggo
 +
 
 +
==Video Solution (HOW TO THINK CREATIVELY!)==
 +
https://youtu.be/P-atxiiTw2I
 +
 
 +
~Education, the Study of Everything
 +
 
 +
 
 +
 
 +
 
 +
== Video Solutions ==
 +
===Video Solution 1===
 +
https://youtu.be/ba6w1OhXqOQ?t=1403
 +
 
 +
~ pi_is_3.14
 +
===Video Solution 2===
 +
https://youtu.be/zQG70XKAdeA ~ North America Math Contest Go Go Go
  
Given that <math>(\sqrt {49-x^2} - \sqrt {25-x^2})</math> = 3, <math>(\sqrt {49-x^2} + \sqrt {25-x^2}) = \frac {24} {3} = \boxed{(A) 8}</math>
+
===Video Solution 3===
 +
https://youtu.be/ZiZVIMmo260
  
Solution by PancakeMonster2004, explanations added by a1b2.
+
===Video Solution 4===
===Solution 2 (bad)===
+
https://youtu.be/5cA87rbzFdw
Let <math>u=\sqrt{49-x^2}</math>, and let <math>v=\sqrt{25-x^2}</math>. Then <math>v=\sqrt{u^2-24}</math>. Substituting, we get <math>u-\sqrt{u^2-24}=3</math>. Rearranging, we get <math>u-3=\sqrt{u^2-24}</math>. Squaring both sides and solving, we get <math>u=\frac{11}{2}</math> and <math>v=\frac{11}{2}-3=\frac{5}{2}</math>. Adding, we get that the answer is <math>\boxed{(A) 8}</math>
 
  
== See Also ==
+
~savannahsolver
 +
 
 +
==See Also==
  
 
{{AMC10 box|year=2018|ab=A|num-b=9|num-a=11}}
 
{{AMC10 box|year=2018|ab=A|num-b=9|num-a=11}}
{{MAA Notice}}
+
 
 +
[[Category:Introductory Algebra Problems]]

Latest revision as of 19:59, 20 April 2024

Problem

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3\]What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8\qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9\qquad \textbf{(D) }2\sqrt{10}+4\qquad \textbf{(E) }12\qquad$

Solution 10 (Solution 1 but alternate)

We let $a=\sqrt{49-x^2}+\sqrt{25-x^2}$; in other words, we want to find $a$. We know that $a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.$ Thus, $a=\boxed{8}$.

~Technodoggo

Video Solution (HOW TO THINK CREATIVELY!)

https://youtu.be/P-atxiiTw2I

~Education, the Study of Everything



Video Solutions

Video Solution 1

https://youtu.be/ba6w1OhXqOQ?t=1403

~ pi_is_3.14

Video Solution 2

https://youtu.be/zQG70XKAdeA ~ North America Math Contest Go Go Go

Video Solution 3

https://youtu.be/ZiZVIMmo260

Video Solution 4

https://youtu.be/5cA87rbzFdw

~savannahsolver

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions