Difference between revisions of "2018 AMC 10A Problems/Problem 22"
m (→Solution) |
|||
Line 3: | Line 3: | ||
<math>\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}</math> | <math>\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}</math> | ||
− | == Solution == | + | == Solution 1 == |
We can say that <math>a</math> and <math>b</math> 'have' <math>2^3 * 3</math>, that <math>b</math> and <math>c</math> have <math>2^2 * 3^2</math>, and that <math>c</math> and <math>d</math> have <math>3^3 * 2</math>. Combining <math>1</math> and <math>2</math> yields <math>b</math> has (at a minimum) <math>2^3 * 3^2</math>, and thus <math>a</math> has <math>2^3 * 3</math> (and no more powers of <math>3</math> because otherwise <math>gcd(a,b)</math> would be different). In addition, <math>c</math> has <math>3^3 * 2^2</math>, and thus <math>d</math> has <math>3^3 * 2</math> (similar to <math>a</math>, we see that <math>d</math> cannot have any other powers of <math>2</math>). We now assume the simplest scenario, where <math>a = 2^3 * 3</math> and <math>d = 3^3 * 2</math>. According to this base case, we have <math>gcd(a, d) = 2 * 3 = 6</math>. We want an extra factor between the two such that this number is between <math>70</math> and <math>100</math>, and this new factor cannot be divisible by <math>2</math> or <math>3</math>. Checking through, we see that <math>6 * 13</math> is the only one that works. Therefore the answer is <math>\boxed{\textbf{(D) } 13}</math> | We can say that <math>a</math> and <math>b</math> 'have' <math>2^3 * 3</math>, that <math>b</math> and <math>c</math> have <math>2^2 * 3^2</math>, and that <math>c</math> and <math>d</math> have <math>3^3 * 2</math>. Combining <math>1</math> and <math>2</math> yields <math>b</math> has (at a minimum) <math>2^3 * 3^2</math>, and thus <math>a</math> has <math>2^3 * 3</math> (and no more powers of <math>3</math> because otherwise <math>gcd(a,b)</math> would be different). In addition, <math>c</math> has <math>3^3 * 2^2</math>, and thus <math>d</math> has <math>3^3 * 2</math> (similar to <math>a</math>, we see that <math>d</math> cannot have any other powers of <math>2</math>). We now assume the simplest scenario, where <math>a = 2^3 * 3</math> and <math>d = 3^3 * 2</math>. According to this base case, we have <math>gcd(a, d) = 2 * 3 = 6</math>. We want an extra factor between the two such that this number is between <math>70</math> and <math>100</math>, and this new factor cannot be divisible by <math>2</math> or <math>3</math>. Checking through, we see that <math>6 * 13</math> is the only one that works. Therefore the answer is <math>\boxed{\textbf{(D) } 13}</math> | ||
Solution by JohnHankock | Solution by JohnHankock | ||
+ | |||
+ | ==Solution 2 (Better notation)== | ||
+ | |||
+ | First off, note that <math>24</math>, <math>36</math>, and <math>54</math> are all of the form <math>2^x\times3^y</math>. The prime factorizations are <math>2^3\times 3^1</math>, <math>2^2\times 3^2</math> and <math>2^1\times 3^3</math>, respectively. Now, let <math>a_2</math> and <math>a_3</math> be the number of times <math>2</math> and <math>3</math> go into <math>a</math>,respectively. Define <math>b_2</math>, <math>b_3</math>, <math>c_2</math>, and <math>c_3</math> similiarly. Now, translate the <math>lcm</math>s into the following: | ||
+ | <cmath>\min(a_2,b_2)=3</cmath> <cmath>\min(a_3,b_3)=1</cmath> <cmath>\min(b_2,c_2)=2</cmath> <cmath>\min(b_3,c_3)=2</cmath> <cmath>\min(a_2,c_2)=1</cmath> <cmath>\min(a_3,c_3)=3</cmath> . | ||
+ | |||
+ | (Unfinished) | ||
+ | ~Rowechen Zhong | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2018|ab=A|num-b=21|num-a=23}} | {{AMC10 box|year=2018|ab=A|num-b=21|num-a=23}} |
Revision as of 13:10, 11 February 2018
Let and be positive integers such that , , , and . Which of the following must be a divisor of ?
Solution 1
We can say that and 'have' , that and have , and that and have . Combining and yields has (at a minimum) , and thus has (and no more powers of because otherwise would be different). In addition, has , and thus has (similar to , we see that cannot have any other powers of ). We now assume the simplest scenario, where and . According to this base case, we have . We want an extra factor between the two such that this number is between and , and this new factor cannot be divisible by or . Checking through, we see that is the only one that works. Therefore the answer is
Solution by JohnHankock
Solution 2 (Better notation)
First off, note that , , and are all of the form . The prime factorizations are , and , respectively. Now, let and be the number of times and go into ,respectively. Define , , , and similiarly. Now, translate the s into the following: .
(Unfinished) ~Rowechen Zhong
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |