Difference between revisions of "2021 AMC 12A Problems/Problem 8"

m
 
(2 intermediate revisions by one other user not shown)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
Making a small chart, we have
+
We construct the following table:
 +
<cmath>\begin{array}{c||c|c|c|c|c|c|c|c|c|c|c} 
 +
&&&&&&&&&&& \\ [-2.5ex]
 +
\textbf{Term} &\boldsymbol{D_0}&\boldsymbol{D_1}&\boldsymbol{D_2}&\boldsymbol{D_3}&\boldsymbol{D_4}&\boldsymbol{D_5}&\boldsymbol{D_6}&\boldsymbol{D_7}&\boldsymbol{D_8}&\boldsymbol{D_9}&\boldsymbol{\cdots} \\
 +
\hline \hline
 +
&&&&&&&&&&& \\ [-2.25ex]
 +
\textbf{Value} & 0&0&1&1&1&2&3&4&6&9&\cdots \\ \hline 
 +
&&&&&&&&&&& \\ [-2.25ex]
 +
\textbf{Parity} & E&E&O&O&O&E&O&E&E&O&\cdots
 +
\end{array}</cmath>
 +
Note that <math>(D_7,D_8,D_9)</math> and <math>(D_0,D_1,D_2)</math> have the same parities, so the parity is periodic with period <math>7.</math> Since the remainders of <math>(2021\div7,2022\div7,2023\div7)</math> are <math>(5,6,7),</math> we conclude that <math>(D_{2021},D_{2022},D_{2023})</math> and <math>(D_5,D_6,D_7)</math> have the same parities, namely <math>\boxed{\textbf{(C) }(E,O,E)}.</math>
  
<math>\begin{tabular}{c|c|c|c|c|c|c|c|c|c}
+
~JHawk0224 ~MRENTHUSIASM
D0&D1&D2&D3&D4&D5&D6&D7&D8&D9\\\hline
 
0&0&1&1&1&2&3&4&6&9\\\hline
 
E&E&O&O&O&E&O&E&E&O
 
\end{tabular}</math>
 
  
This starts repeating every 7 terms, so <math>D_{2021}=D_5=E</math>, <math>D_{2022}=D_6=O</math>, and <math>D_{2023}=D_7=E</math>. Thus, the answer is <math>\boxed{\textbf{(C) }(E, O, E)}</math>
+
==Video Solution (Quick and Easy)==
~JHawk0224
+
https://youtu.be/ecLkESGj-pY
  
==Video Solution by Aaron He (Finding cycles)==
+
~Education, the Study of Everything
 +
 
 +
 
 +
==Video Solution by Aaron He (Finding Cycles)==
 
https://www.youtube.com/watch?v=xTGDKBthWsw&t=7m43s
 
https://www.youtube.com/watch?v=xTGDKBthWsw&t=7m43s
 +
 
==Video Solution by Hawk Math==
 
==Video Solution by Hawk Math==
 
https://www.youtube.com/watch?v=P5al76DxyHY
 
https://www.youtube.com/watch?v=P5al76DxyHY
  
== Video Solution (Using parity and pattern finding) ==
+
== Video Solution by OmegaLearn (Using Parity and Pattern Finding) ==
 
https://youtu.be/TSBjbhN_QKY
 
https://youtu.be/TSBjbhN_QKY
  

Latest revision as of 23:25, 22 October 2022

Problem

A sequence of numbers is defined by $D_0=0,D_1=0,D_2=1$ and $D_n=D_{n-1}+D_{n-3}$ for $n\ge 3$. What are the parities (evenness or oddness) of the triple of numbers $(D_{2021},D_{2022},D_{2023})$, where $E$ denotes even and $O$ denotes odd?

$\textbf{(A) }(O,E,O) \qquad \textbf{(B) }(E,E,O) \qquad \textbf{(C) }(E,O,E) \qquad \textbf{(D) }(O,O,E) \qquad \textbf{(E) }(O,O,O)$

Solution

We construct the following table: \[\begin{array}{c||c|c|c|c|c|c|c|c|c|c|c}    &&&&&&&&&&& \\ [-2.5ex] \textbf{Term} &\boldsymbol{D_0}&\boldsymbol{D_1}&\boldsymbol{D_2}&\boldsymbol{D_3}&\boldsymbol{D_4}&\boldsymbol{D_5}&\boldsymbol{D_6}&\boldsymbol{D_7}&\boldsymbol{D_8}&\boldsymbol{D_9}&\boldsymbol{\cdots} \\  \hline \hline &&&&&&&&&&& \\ [-2.25ex] \textbf{Value} & 0&0&1&1&1&2&3&4&6&9&\cdots \\ \hline   &&&&&&&&&&& \\ [-2.25ex] \textbf{Parity} & E&E&O&O&O&E&O&E&E&O&\cdots \end{array}\] Note that $(D_7,D_8,D_9)$ and $(D_0,D_1,D_2)$ have the same parities, so the parity is periodic with period $7.$ Since the remainders of $(2021\div7,2022\div7,2023\div7)$ are $(5,6,7),$ we conclude that $(D_{2021},D_{2022},D_{2023})$ and $(D_5,D_6,D_7)$ have the same parities, namely $\boxed{\textbf{(C) }(E,O,E)}.$

~JHawk0224 ~MRENTHUSIASM

Video Solution (Quick and Easy)

https://youtu.be/ecLkESGj-pY

~Education, the Study of Everything


Video Solution by Aaron He (Finding Cycles)

https://www.youtube.com/watch?v=xTGDKBthWsw&t=7m43s

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

Video Solution by OmegaLearn (Using Parity and Pattern Finding)

https://youtu.be/TSBjbhN_QKY

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/cckGBU2x1zg?t=227

~IceMatrix

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png