We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Bishops and permutations
Assassino9931   8
N a few seconds ago by awesomeming327.
Source: RMM 2024 Problem 1
Let $n$ be a positive integer. Initially, a bishop is placed in each square of the top row of a $2^n \times 2^n$
chessboard; those bishops are numbered from $1$ to $2^n$ from left to right. A jump is a simultaneous move made by all bishops such that each bishop moves diagonally, in a straight line, some number of squares, and at the end of the jump, the bishops all stand in different squares of the same row.

Find the total number of permutations $\sigma$ of the numbers $1, 2, \ldots, 2^n$ with the following property: There exists a sequence of jumps such that all bishops end up on the bottom row arranged in the order $\sigma(1), \sigma(2), \ldots, \sigma(2^n)$, from left to right.

Israel
8 replies
1 viewing
Assassino9931
Feb 29, 2024
awesomeming327.
a few seconds ago
Hard Combi Geo
AbbyWong   0
an hour ago
Source: Unknown
A (possibly non-convex) planar polygon P is good if no two sides of P are parallel.
For any good polygon P, we may take any three sides of P and extend them into lines. These lines
intersect to form a triangle. Such a triangle is called a peritriangle of P. Let f(P) denote the minimal
number of peritriangles of P whose union completely cover P.
For each positive integer n, find all possible values of f(P) as P ranges over all good n-gons.
0 replies
AbbyWong
an hour ago
0 replies
fifth power
mathbetter   4
N an hour ago by pi_quadrat_sechstel
\[
\text{Find all prime numbers } (p, q) \text{ such that } p^2 + 3pq + q^2 \text{ is a fifth power of an integer.}
\]
4 replies
mathbetter
Mar 25, 2025
pi_quadrat_sechstel
an hour ago
Prove that $\angle FAC = \angle EDB$
micliva   27
N an hour ago by LeYohan
Source: All-Russian Olympiad 1996, Grade 10, First Day, Problem 1
Points $E$ and $F$ are given on side $BC$ of convex quadrilateral $ABCD$ (with $E$ closer than $F$ to $B$). It is known that $\angle BAE = \angle CDF$ and $\angle EAF = \angle FDE$. Prove that $\angle FAC = \angle EDB$.

M. Smurov
27 replies
micliva
Apr 18, 2013
LeYohan
an hour ago
My problem
hacbachvothuong   3
N an hour ago by ektorasmiliotis
Let $a, b, c$ be positive real numbers such that $ab+bc+ca=3$. Prove that:
$\frac{a^2}{a^2+b+c}+\frac{b^2}{b^2+c+a}+\frac{c^2}{c^2+a+b}\ge1$
3 replies
hacbachvothuong
Yesterday at 10:10 AM
ektorasmiliotis
an hour ago
Best bid given the other's bid
fancyfairy   1
N 2 hours ago by fancyfairy
Consider sets $N = \{1,2\}$ (player) and $M = \{a,b,c,d\}$ (items), with valuations given by matrix
$
V = \left[\begin{matrix} 
v_{1a} & v_{1b} & v_{1c} & v_{1d} \\ 
v_{2a} & v_{2b} & v_{2c} & v_{2d} 
\end{matrix}\right]
$
where $v_{ij} \in [0, \infty]$.

A player’s total valuation is the sum of item values won, with half-value for half-won items.

Given player $N \backslash \{i\}$'s bid, player $i$'s bid $B_i$ is strictly better than another possible bid $B_i'$ of his if the total valuation derived from $B_i$ is strictly more than that derived from ${B_i}'$.

Each player simultaneously bids on items with a bid vector $B_i = [b^i_1, b^i_2, b^i_3, b^i_4]$ such that $b^i_j \in [0,1]$ and $\sum_{j \in M} b^i_j \leq 1$. The highest bidder wins an item; ties split ownership equally.

Given valuation matrix $V$, can we always find bid vectors $B_1$ and $B_2$ such that given $B_1$, the second player can not submit a bid strictly better than $B_2$ and vice-versa?
1 reply
fancyfairy
2 hours ago
fancyfairy
2 hours ago
VERY HARD MATH PROBLEM!
slimshadyyy.3.60   30
N 2 hours ago by ohiorizzler1434
Let a ≥b ≥c ≥0 be real numbers such that a^2 +b^2 +c^2 +abc = 4. Prove that
a+b+c+(√a−√c)^2 ≥3.
30 replies
slimshadyyy.3.60
Yesterday at 10:49 PM
ohiorizzler1434
2 hours ago
IMO 2016 Problem 1
quangminhltv99   151
N 2 hours ago by Thelink_20
Source: IMO 2016
Triangle $BCF$ has a right angle at $B$. Let $A$ be the point on line $CF$ such that $FA=FB$ and $F$ lies between $A$ and $C$. Point $D$ is chosen so that $DA=DC$ and $AC$ is the bisector of $\angle{DAB}$. Point $E$ is chosen so that $EA=ED$ and $AD$ is the bisector of $\angle{EAC}$. Let $M$ be the midpoint of $CF$. Let $X$ be the point such that $AMXE$ is a parallelogram. Prove that $BD,FX$ and $ME$ are concurrent.
151 replies
quangminhltv99
Jul 11, 2016
Thelink_20
2 hours ago
polynomial
hanzo.ei   1
N 2 hours ago by alexheinis
Source: from a book
Given a polynomial \( P(x) \) satisfying \( P(0) = 0 \), \( P(1) = 1 \), and for \( n \) (\( n \geq 2, n \in \mathbb{N} \)) positive real numbers \( k_1, k_2, \dots, k_n \). Prove that there exists a strictly increasing sequence of real numbers \( (a_i)_{i=1}^{n} \subset (0,1) \) such that
\[
\sum_{i=1}^{n} \frac{k_i}{P'(a_i)} = \sum_{i=1}^{n} k_i.
\]
1 reply
hanzo.ei
Today at 3:12 PM
alexheinis
2 hours ago
Prove that AY is tangent to (AEF)
geometry6   4
N 2 hours ago by V-217
Source: IMOC 2021 G8
Let $P$ be an arbitrary interior point of $\triangle ABC$, and $AP$, $BP$, $CP$ intersect $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Suppose that $M$ be the midpoint of $BC$, $\odot(AEF)$ and $\odot(ABC)$ intersect at $S$, $SD$ intersects $\odot(ABC)$ at $X$, and $XM$ intersects $\odot(ABC)$ at $Y$. Show that $AY$ is tangent to $\odot(AEF)$.
4 replies
geometry6
Aug 11, 2021
V-217
2 hours ago
A positive integer changes every second and becomes a power of two
nAalniaOMliO   5
N 3 hours ago by RagvaloD
Source: Belarusian National Olympiad 2025
A positive integer with three digits is written on the board. Each second the number $n$ on the board gets replaced by $n+\frac{n}{p}$, where $p$ is the largest prime divisor of $n$.
Prove that either after 999 seconds or 1000 second the number on the board will be a power of two.
5 replies
nAalniaOMliO
Mar 28, 2025
RagvaloD
3 hours ago
possible triangle inequality
sunshine_12   1
N 3 hours ago by kiyoras_2001
a, b, c are real numbers
|a| + |b| + |c| − |a + b| − |b + c| − |c + a| + |a + b + c| ≥ 0
hey everyone, so I came across this inequality, and I did make some progress:
Let (a+b), (b+c), (c+a) be three sums T1, T2 and T3. As there are 3 sums, but they can be of only 2 signs, by pigeon hole principle, atleast 2 of the 3 sums must be of the same sign.
But I'm getting stuck on the case work. Can anyone help?
Thnx a lot
1 reply
sunshine_12
Today at 2:12 PM
kiyoras_2001
3 hours ago
Equal radius
FabrizioFelen   9
N 3 hours ago by ihategeo_1969
Source: Centroamerican Olympiad 2016, Problem 6
Let $\triangle ABC$ be triangle with incenter $I$ and circumcircle $\Gamma$. Let $M=BI\cap \Gamma$ and $N=CI\cap \Gamma$, the line parallel to $MN$ through $I$ cuts $AB$, $AC$ in $P$ and $Q$. Prove that the circumradius of $\odot (BNP)$ and $\odot (CMQ)$ are equal.
9 replies
FabrizioFelen
Jun 20, 2016
ihategeo_1969
3 hours ago
Geo challenge on finding simple ways to solve it
Assassino9931   3
N 4 hours ago by africanboy
Source: Bulgaria Spring Mathematical Competition 2025 9.2
Let $ABC$ be an acute scalene triangle inscribed in a circle \( \Gamma \). The angle bisector of \( \angle BAC \) intersects \( BC \) at \( L \) and \( \Gamma \) at \( S \). The point \( M \) is the midpoint of \( AL \). Let \( AD \) be the altitude in \( \triangle ABC \), and the circumcircle of \( \triangle DSL \) intersects \( \Gamma \) again at \( P \). Let \( N \) be the midpoint of \( BC \), and let \( K \) be the reflection of \( D \) with respect to \( N \). Prove that the triangles \( \triangle MPS \) and \( \triangle ADK \) are similar.
3 replies
Assassino9931
Today at 12:35 PM
africanboy
4 hours ago
Something nice
KhuongTrang   27
N Today at 12:07 PM by Zuyong
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
27 replies
KhuongTrang
Nov 1, 2023
Zuyong
Today at 12:07 PM
Something nice
G H J
G H BBookmark kLocked kLocked NReply
Source: own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#1
Y by
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
This post has been edited 2 times. Last edited by KhuongTrang, Nov 19, 2023, 11:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7339 posts
#2
Y by
Beauty. But difficult
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#19 • 1 Y
Y by MihaiT
Non sense post.
This post has been edited 1 time. Last edited by KhuongTrang, Dec 23, 2023, 1:30 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#31
Y by
Something not relevant
This post has been edited 1 time. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30161 posts
#32 • 1 Y
Y by teomihai
KhuongTrang wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$a\sqrt{bc+1}+b\sqrt{ca+1}+c\sqrt{ab+1}\ge 2\sqrt{a+b+c-1}.$$
Because $$\sum_{cyc}a\sqrt{bc+1}=\sqrt{\sum_{cyc}(a^2bc+a^2+2ab\sqrt{(bc+1)(ac+1)}}\geq\sqrt{\sum_{cyc}(a^2+2ab)}=a+b+c\geq2\sqrt{a+b+c-1}.$$
This post has been edited 1 time. Last edited by arqady, Nov 19, 2023, 6:25 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#34
Y by
Something not relevant
This post has been edited 2 times. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41325 posts
#35
Y by
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$\sqrt{a+b+abc}+\sqrt{b+c+abc}+\sqrt{c+a+abc}\ge  2+\sqrt{2}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#43
Y by
Something not relevant
This post has been edited 1 time. Last edited by KhuongTrang, Dec 16, 2023, 3:48 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#59
Y by
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+bc}{a+1}}+\sqrt{\frac{b+ca}{b+1}}+\sqrt{\frac{c+ab}{c+1}}\le 1+\sqrt{2}. }$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mudok
3377 posts
#60 • 1 Y
Y by arqady
arqady wrote:
KhuongTrang wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$a\sqrt{bc+1}+b\sqrt{ca+1}+c\sqrt{ab+1}\ge 2\sqrt{a+b+c-1}.$$
Because $$\sum_{cyc}a\sqrt{bc+1}=\sqrt{\sum_{cyc}(a^2bc+a^2+2ab\sqrt{(bc+1)(ac+1)}}\geq\sqrt{\sum_{cyc}(a^2+2ab)}=a+b+c\geq2\sqrt{a+b+c-1}.$$
We can directly use: $\sum a\sqrt{bc+1}\ge \sum a$ :lol:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#65
Y by
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=2.$ Prove that

$$\color{blue}{\sqrt{15a+1} +\sqrt{15b+1} +\sqrt{15c+1}\ge 3\sqrt{3}\cdot\sqrt{1+2(ab+bc+ca)}. }$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30161 posts
#66
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=2.$ Prove that

$$\color{blue}{\sqrt{15a+1} +\sqrt{15b+1} +\sqrt{15c+1}\ge 3\sqrt{3}\cdot\sqrt{1+2(ab+bc+ca)}. }$$
Holder with $(3a+1)^3$ and $uvw$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#72 • 1 Y
Y by ehuseyinyigit
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+bc}{a+1}}+\sqrt{\frac{b+ca}{b+1}}+\sqrt{\frac{c+ab}{c+1}}\le 1+\sqrt{2}. }$$

Problem. Given non-negative real numbers satisfying $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+b}{c+1}}+\sqrt{\frac{c+b}{a+1}}+\sqrt{\frac{a+c}{b+1}}\le 2\sqrt{a+b+c}. }$$Equality holds iff $a=b=1,c=0$ or $a=b\rightarrow 0,c\rightarrow +\infty$ and any cyclic permutations.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30161 posts
#73
Y by
KhuongTrang wrote:
Problem. Given non-negative real numbers satisfying $ab+bc+ca=1.$ Prove that
$$\color{blue}{\sqrt{\frac{a+b}{c+1}}+\sqrt{\frac{c+b}{a+1}}+\sqrt{\frac{a+c}{b+1}}\le 2\sqrt{a+b+c}. }$$Equality holds iff $a=b=1,c=0$ or $a=b\rightarrow 0,c\rightarrow +\infty$ and any cyclic permutations.
Because $$\sum_{cyc}\sqrt{\frac{a+b}{c+1}}\leq\sqrt{\sum_{cyc}(a+b)\sum_{cyc}\frac{1}{c+1}}\leq2\sqrt{a+b+c}.$$:-D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bellahuangcat
253 posts
#74
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$

what why does that look so easy and difficult at the same time lol
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ehuseyinyigit
793 posts
#75
Y by
That's the beauty of it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bellahuangcat
253 posts
#76
Y by
ehuseyinyigit wrote:
That's the beauty of it

yeah ig
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
arqady
30161 posts
#78
Y by
sqing wrote:
Given non-negative real numbers $a,b,c$ satisfying $ab+bc+ca=1.$ Prove that$$\sqrt{a+b+abc}+\sqrt{b+c+abc}+\sqrt{c+a+abc}\ge  2+\sqrt{2}$$
The following inequality is also true.
Let $a$, $b$ and $c$ be non-negative numbers such that $ab+ac+bc=1$. Prove that:
$$\sqrt{a+b+\frac{13}{14}abc}+\sqrt{b+c+\frac{13}{14}abc}+\sqrt{c+a+\frac{13}{14}abc}\ge  2+\sqrt{2}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#83
Y by
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=3.$ Prove that

$$\color{blue}{\sqrt{\frac{4}{3}(ab+bc+ca)+5}\ge \sqrt{a}+\sqrt{b}+\sqrt{c}.}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kiyoras_2001
664 posts
#84
Y by
KhuongTrang wrote:
Problem. Given $a,b,c$ be non-negative real numbers such that $a+b+c=3.$ Prove that
$$\color{blue}{\sqrt{\frac{4}{3}(ab+bc+ca)+5}\ge \sqrt{a}+\sqrt{b}+\sqrt{c}.}$$
After homogenizing and squaring it becomes
\[\sum a^2+8\sum ab\ge 3\sum a\sum\sqrt{ab}.\]Changing \(a\to a^2, b\to b^2, c\to c^2\) it becomes a fourth degree inequality, so is linear in \(w^3\). Thus it remains to check only the cases \(c=0\) and \(b=c=1\) which is easy.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#92
Y by
Problem. Let $a,b,c$ be non-negative real variables with $ab+bc+ca>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$
This post has been edited 1 time. Last edited by KhuongTrang, Mar 28, 2025, 1:21 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jokehim
1027 posts
#93
Y by
KhuongTrang wrote:
Problem. Let $a,b,c$ be non-negative real variables with $a+b+c>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$

Assume that $a+b+c=1$ and set $M=a^2b+b^2c+c^2a,\ \ ab+bc+ca=q,\ \ abc=r.$ The inequality becomes$$10 M^2 - 16 M q + 12 M r - 8 q^3 + 8 q^2 - 51 q r + 63 r^2 + 10 r\ge 0$$ưhere$$\Delta_M=8 (40 q^3 - 8 q^2 + 207 q r - r (297 r + 50))<0$$which ends the proofs :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#94
Y by
#93 Could you please check your solution again, jokehim? I think this inequality is very hard to think of a proof in normal way.
Hope to see some ideas. Btw, it is obviously true by BW.
This post has been edited 2 times. Last edited by KhuongTrang, Yesterday at 12:05 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jokehim
1027 posts
#95
Y by
KhuongTrang wrote:
#93 Could you please check your solution again, jokehim? I think this inequality is very hard to think of a proof in normal way.
Hope to see some ideas. Btw, it is obviously true by BW.
Problem. Let $a,b,c$ be positive real variables with $a+b+c+2\sqrt{abc}=1.$ Prove that$$\frac{\sqrt{a+ab+b}}{\sqrt{ab}+\sqrt{c}}+\frac{\sqrt{b+bc+c}}{\sqrt{bc}+\sqrt{a}}+\frac{\sqrt{c+ca+a}}{\sqrt{ca}+\sqrt{b}}\ge 3.$$Equality holds iff $a=b=c=\dfrac{1}{4}.$

I don't see what's wrong with my solution :|
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nguyenhuyen_AG
3301 posts
#96
Y by
KhuongTrang wrote:
Problem. Let $a,b,c$ be non-negative real variables with $a+b+c>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$
We have the following estimate
\[\frac{12a(a+2b)}{4ab+bc+ca} \geqslant \frac{32a^3+3(33b+56c)a^2+3(26b^2+102bc+13c^2)a-4(4b+c)(b-2c)^2}{11[ab(a+b)+bc(b+c)+ca(c+a)]+51abc}.\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Zuyong
673 posts
#98
Y by
Nguyenhuyen_AG wrote:
KhuongTrang wrote:
Problem. Let $a,b,c$ be non-negative real variables with $a+b+c>0.$ Prove that$$\color{black}{\frac{a^2+2ab}{4ab+bc+ca}+\frac{b^2+2bc}{4bc+ca+ab}+\frac{c^2+2ca}{4ca+ab+bc}\ge \frac{3}{2}. }$$Equality holds iff $(a,b,c)\sim(t,t,t)$ or $(a,b,c)\sim\left(t,0,2t\right)$ where $t>0.$
We have the following estimate
\[\frac{12a(a+2b)}{4ab+bc+ca} \geqslant \frac{32a^3+3(33b+56c)a^2+3(26b^2+102bc+13c^2)a-4(4b+c)(b-2c)^2}{11[ab(a+b)+bc(b+c)+ca(c+a)]+51abc}.\]

How do you come up with this estimate?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KhuongTrang
712 posts
#99
Y by
Problem. Let $a,b,c$ be real variables with $a+b+c=3.$ Prove that$$\color{black}{\frac{1}{a^{2}+b^{2}+c}+\frac{1}{b^{2}+c^{2}+a}+\frac{1}{c^{2}+a^{2}+b}\le \frac{15}{2a^{2}+2b^{2}+2c^{2}+9}.}$$Equality holds iff $a=b=c=1$ or $a=b=0,c=3$ and any cyclic permutations.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Zuyong
673 posts
#100
Y by
Why do the author just post inequalities without any solutions?
Z K Y
N Quick Reply
G
H
=
a