Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Central sequences
EeEeRUT   13
N 4 minutes ago by v_Enhance
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
13 replies
EeEeRUT
Apr 16, 2025
v_Enhance
4 minutes ago
Interesting inequality
sqing   0
11 minutes ago
Source: Own
Let $ a,b,c\geq  0 , a^2+b^2+c^2 =3.$ Prove that
$$ a^4+ b^4+c^4+6abc\leq9$$$$ a^3+ b^3+  c^3+3( \sqrt{3}-1)abc\leq 3\sqrt 3$$
0 replies
sqing
11 minutes ago
0 replies
IMO Shortlist 2014 C7
hajimbrak   19
N 22 minutes ago by quantam13
Let $M$ be a set of $n \ge 4$ points in the plane, no three of which are collinear. Initially these points are connected with $n$ segments so that each point in $M$ is the endpoint of exactly two segments. Then, at each step, one may choose two segments $AB$ and $CD$ sharing a common interior point and replace them by the segments $AC$ and $BD$ if none of them is present at this moment. Prove that it is impossible to perform $n^3 /4$ or more such moves.

Proposed by Vladislav Volkov, Russia
19 replies
hajimbrak
Jul 11, 2015
quantam13
22 minutes ago
<BAC = 2 <ABC wanted, AC + AI = BC given , incenter I
parmenides51   3
N an hour ago by LeYohan
Source: 2020 Dutch IMO TST 1.1
In acute-angled triangle $ABC, I$ is the center of the inscribed circle and holds $| AC | + | AI | = | BC |$. Prove that $\angle BAC = 2 \angle ABC$.
3 replies
parmenides51
Nov 21, 2020
LeYohan
an hour ago
China South East Mathematical Olympiad 2014 Q3B
sqing   5
N an hour ago by MathLuis
Source: China Zhejiang Fuyang , 27 Jul 2014
Let $p$ be a primes ,$x,y,z $ be positive integers such that $x<y<z<p$ and $\{\frac{x^3}{p}\}=\{\frac{y^3}{p}\}=\{\frac{z^3}{p}\}$.
Prove that $(x+y+z)|(x^5+y^5+z^5).$
5 replies
sqing
Aug 17, 2014
MathLuis
an hour ago
Parallelograms and concyclicity
Lukaluce   32
N an hour ago by v_Enhance
Source: EGMO 2025 P4
Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.
32 replies
Lukaluce
Apr 14, 2025
v_Enhance
an hour ago
Gcd of N and its coprime pair sum
EeEeRUT   18
N an hour ago by lksb
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < \cdots < c_m$ be all positive integers smaller than $N$ that are coprime to $N$. Find all $N \geqslant 3$ such that $$\gcd( N, c_i + c_{i+1}) \neq 1$$for all $1 \leqslant i \leqslant m-1$

Here $\gcd(a, b)$ is the largest positive integer that divides both $a$ and $b$. Integers $a$ and $b$ are coprime if $\gcd(a, b) = 1$.

Proposed by Paulius Aleknavičius, Lithuania
18 replies
EeEeRUT
Apr 16, 2025
lksb
an hour ago
Easy right-angled triangle problem
gghx   7
N 2 hours ago by LeYohan
Source: SMO open 2024 Q1
In triangle $ABC$, $\angle B=90^\circ$, $AB>BC$, and $P$ is the point such that $BP=BC$ and $\angle APB=90^\circ$, where $P$ and $C$ lie on the same side of $AB$. Let $Q$ be the point on $AB$ such that $AP=AQ$, and let $M$ be the midpoint of $QC$. Prove that the line through $M$ parallel to $AP$ passes through the midpoint of $AB$.
7 replies
gghx
Aug 3, 2024
LeYohan
2 hours ago
ai+aj is the multiple of n
Jackson0423   2
N 2 hours ago by Jackson0423
Consider an strictly increasing sequence of integers \( a_n \).
For every positive integer \( n \), there exist indices \( 1 \leq i < j \leq n \) such that \( a_i + a_j \) is divisible by \( n \).
Given that \( a_1 \geq 1 \), find the minimum possible value of \( a_{100} \).
2 replies
Jackson0423
Yesterday at 12:41 AM
Jackson0423
2 hours ago
Triple mixtilinear then sum of segments
Noob_at_math_69_level   5
N 3 hours ago by awesomeming327.
Source: DGO 2023 Team P4
Let $\triangle{ABC}$ be an acute triangle with the $A,B,C-$mixtilinear incircles are $\Omega_A,\Omega_B,\Omega_C$ respectively. $\Omega_A$ is tangent to the circumcircle of $\triangle{ABC}$ at $X$. $O_2,O_3$ are the centers of circles $\Omega_B,\Omega_C$ respectively. Suppose the reflection of line $BX$ over $BO_3$ intersects the reflection of line $CX$ over $CO_2$ at point $S.$ Prove that: $BS+BX=CS+CX.$

Proposed by many authors
5 replies
Noob_at_math_69_level
Dec 18, 2023
awesomeming327.
3 hours ago
Inspired by a cool result
DoThinh2001   0
3 hours ago
Source: Old?
Let three real numbers $a,b,c\geq 0$, no two of which are $0$. Prove that:
$$\sqrt{\frac{a^2+bc}{b^2+c^2}}+\sqrt{\frac{b^2+ca}{c^2+a^2}}+\sqrt{\frac{c^2+ab}{a^2+b^2}}\geq 2+\sqrt{\frac{ab+bc+ca}{a^2+b^2+c^2}}.$$
Inspiration
0 replies
DoThinh2001
3 hours ago
0 replies
Basic ideas in junior diophantine equations
Maths_VC   4
N 3 hours ago by TopGbulliedU
Source: Serbia JBMO TST 2025, Problem 3
Determine all positive integers $a, b$ and $c$ such that
$2$ $\cdot$ $10^a + 5^b = 2025^c$
4 replies
Maths_VC
May 27, 2025
TopGbulliedU
3 hours ago
Iran TST Starter
M11100111001Y1R   8
N 3 hours ago by flower417477
Source: Iran TST 2025 Test 1 Problem 1
Let \( a_n \) be a sequence of positive real numbers such that for every \( n > 2025 \), we have:
\[
a_n = \max_{1 \leq i \leq 2025} a_{n-i} - \min_{1 \leq i \leq 2025} a_{n-i}
\]Prove that there exists a natural number \( M \) such that for all \( n > M \), the following holds:
\[
a_n < \frac{1}{1404}
\]
8 replies
M11100111001Y1R
May 27, 2025
flower417477
3 hours ago
diophantine with factorials and exponents
skellyrah   2
N 5 hours ago by maromex
find all positive integers $a,b,c$ such that $$ a! + 5^b = c^3 $$
2 replies
skellyrah
Yesterday at 7:56 PM
maromex
5 hours ago
Number Theory Chain!
JetFire008   64
N May 23, 2025 by Primeniyazidayi
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
64 replies
JetFire008
Apr 7, 2025
Primeniyazidayi
May 23, 2025
Number Theory Chain!
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#54 • 1 Y
Y by cubres
S26=S28
This post has been edited 1 time. Last edited by Primeniyazidayi, Apr 13, 2025, 11:24 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#55 • 1 Y
Y by cubres
S30
This post has been edited 1 time. Last edited by Primeniyazidayi, Apr 13, 2025, 11:27 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Anto0110
103 posts
#56 • 1 Y
Y by cubres
S30

P31
This post has been edited 2 times. Last edited by Anto0110, Apr 13, 2025, 12:29 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JetFire008
126 posts
#57 • 1 Y
Y by cubres
I didn't use AoPS for 4 days and now THERE ARE 52 POSTS!?!?!??
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JetFire008
126 posts
#58 • 2 Y
Y by cubres, whwlqkd
whwlqkd wrote:
Click to reveal hidden text
All the best for your exams!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lil_flip38
58 posts
#59 • 1 Y
Y by cubres
S31
P32
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TestX01
341 posts
#60
Y by
S32
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CHESSR1DER
69 posts
#61
Y by
P33
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#62
Y by
CHESSR1DER wrote:
P33

S33
P34
This post has been edited 1 time. Last edited by Primeniyazidayi, Apr 16, 2025, 3:43 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jason02
27 posts
#63
Y by
S34
P35
This post has been edited 1 time. Last edited by jason02, Apr 27, 2025, 1:09 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
144 posts
#65
Y by
Click to reveal hidden text
thanks
Click to reveal hidden text
This post has been edited 1 time. Last edited by whwlqkd, May 3, 2025, 12:27 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JetFire008
126 posts
#66 • 1 Y
Y by whwlqkd
whwlqkd wrote:
Click to reveal hidden text
thanks
Click to reveal hidden text
Welcome back!!!! :trampoline:
& you are welcome! :-D
This post has been edited 1 time. Last edited by JetFire008, May 5, 2025, 3:59 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
144 posts
#67
Y by
Bump for P35
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GreekIdiot
276 posts
#68 • 1 Y
Y by whwlqkd
S35
P36
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#70
Y by
GreekIdiot wrote:
S35
P36

S36
Lets do some quadratic reciprocity.
P37
Z K Y
N Quick Reply
G
H
=
a