Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Arrange marbles
FunGuy1   0
2 minutes ago
Source: Own?
Anna has $200$ marbles in $25$ colors such that there are exactly $8$ marbles of each color. She wants to arrange them on $50$ shelves, $4$ marbles on each shelf such that for any $2$ colors there is a shelf that has marbles of those colors.
Can Anna achieve her goal?
0 replies
FunGuy1
2 minutes ago
0 replies
Weird algebra with combinatorial flavour
a_507_bc   5
N 14 minutes ago by BreezeCrowd
Source: Kazakhstan National MO 2023 (10-11).2
Let $n>100$ be an integer. The numbers $1,2 \ldots, 4n$ are split into $n$ groups of $4$. Prove that there are at least $\frac{(n-6)^2}{2}$ quadruples $(a, b, c, d)$ such that they are all in different groups, $a<b<c<d$ and $c-b \leq |ad-bc|\leq d-a$.
5 replies
a_507_bc
Mar 21, 2023
BreezeCrowd
14 minutes ago
Prove the inequality
Butterfly   1
N 15 minutes ago by Royal_mhyasd

Prove
$$x^2+y^2+7\ge 3(x+y)+\frac{9}{xy+2}~~(x,y>0).$$
1 reply
Butterfly
an hour ago
Royal_mhyasd
15 minutes ago
old and easy imo inequality
Valentin Vornicu   216
N 31 minutes ago by alexanderchew
Source: IMO 2000, Problem 2, IMO Shortlist 2000, A1
Let $ a, b, c$ be positive real numbers so that $ abc = 1$. Prove that
\[ \left( a - 1 + \frac 1b \right) \left( b - 1 + \frac 1c \right) \left( c - 1 + \frac 1a \right) \leq 1.
\]
216 replies
Valentin Vornicu
Oct 24, 2005
alexanderchew
31 minutes ago
Tangent to incircles.
dendimon18   7
N an hour ago by Gggvds1
Source: ISR 2021 TST1 p.3
Let $ABC$ be an acute triangle with orthocenter $H$. Prove that there is a line $l$ which is parallel to $BC$ and tangent to the incircles of $ABH$ and $ACH$.
7 replies
dendimon18
May 4, 2022
Gggvds1
an hour ago
Problem 3 of RMO 2006 (Regional Mathematical Olympiad-India)
makar   36
N an hour ago by SomeonecoolLovesMaths
Source: Elementry inequality
If $ a,b,c$ are three positive real numbers, prove that $ \frac {a^{2}+1}{b+c}+\frac {b^{2}+1}{c+a}+\frac {c^{2}+1}{a+b}\ge 3$
36 replies
makar
Sep 13, 2009
SomeonecoolLovesMaths
an hour ago
Three numbers cannot be squares simultaneously
WakeUp   40
N an hour ago by Adywastaken
Source: APMO 2011
Let $a,b,c$ be positive integers. Prove that it is impossible to have all of the three numbers $a^2+b+c,b^2+c+a,c^2+a+b$ to be perfect squares.
40 replies
WakeUp
May 18, 2011
Adywastaken
an hour ago
Kaprekar Number
CSJL   5
N an hour ago by Adywastaken
Source: 2025 Taiwan TST Round 1 Independent Study 2-N
Let $k$ be a positive integer. A positive integer $n$ is called a $k$-good number if it satisfies
the following two conditions:

1. $n$ has exactly $2k$ digits in decimal representation (it cannot have leading zeros).

2. If the first $k$ digits and the last $k$ digits of $n$ are considered as two separate $k$-digit
numbers (which may have leading zeros), the square of their sum is equal to $n$.

For example, $2025$ is a $2$-good number because
\[(20 + 25)^2 = 2025.\]Find all $3$-good numbers.
5 replies
CSJL
Mar 6, 2025
Adywastaken
an hour ago
Projective geometry
definite_denny   0
an hour ago
Source: IDK
Let ABC be a triangle and let DEF be the tangency point of incircirle with sides BC,CA,AB. Points P,Q are chosen on sides AB,AC such that PQ is parallel to BC and PQ is tangent to the incircle. Let M denote the midpoint of PQ. Let EF intersect BC at T. Prove that TM is tangent to the incircle
0 replies
definite_denny
an hour ago
0 replies
Problem 7 of RMO 2006 (Regional Mathematical Olympiad-India)
makar   11
N an hour ago by SomeonecoolLovesMaths
Source: Functional Equation
Let $ X$ be the set of all positive integers greater than or equal to $ 8$ and let $ f: X\rightarrow X$ be a function such that $ f(x+y)=f(xy)$ for all $ x\ge 4, y\ge 4 .$ if $ f(8)=9$, determine $ f(9) .$
11 replies
makar
Sep 13, 2009
SomeonecoolLovesMaths
an hour ago
Hardest in ARO 2008
discredit   26
N an hour ago by JARP091
Source: ARO 2008, Problem 11.8
In a chess tournament $ 2n+3$ players take part. Every two play exactly one match. The schedule is such that no two matches are played at the same time, and each player, after taking part in a match, is free in at least $ n$ next (consecutive) matches. Prove that one of the players who play in the opening match will also play in the closing match.
26 replies
discredit
Jun 11, 2008
JARP091
an hour ago
Inequality
Kei0923   2
N 2 hours ago by Kei0923
Source: Own.
Let $k\leq 1$ be a fixed positive real number. Find the minimum possible value $M$ such that for any positive reals $a$, $b$, $c$, $d$, we have
$$\sqrt{\frac{ab}{(a+b)(b+c)}}+\sqrt{\frac{cd}{(c+d)(d+ka)}}\leq M.$$
2 replies
Kei0923
Jul 25, 2023
Kei0923
2 hours ago
PAMO 2023 Problem 2
kerryberry   6
N 2 hours ago by justaguy_69
Source: 2023 Pan African Mathematics Olympiad Problem 2
Find all positive integers $m$ and $n$ with no common divisor greater than 1 such that $m^3 + n^3$ divides $m^2 + 20mn + n^2$. (Professor Yongjin Song)
6 replies
kerryberry
May 17, 2023
justaguy_69
2 hours ago
My Unsolved Problem
ZeltaQN2008   0
2 hours ago
Source: IDK
Given a positive integer \( m \) and \( a > 1 \). Prove that there always exists a positive integer \( n \) such that \( m \mid (a^n + n) \).

P/s: I can prove the problem if $m$ is a power of a prime number, but for arbitrary $m$ then well.....
0 replies
ZeltaQN2008
2 hours ago
0 replies
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N Apr 24, 2025 by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
Apr 24, 2025
Vertices of a convex polygon if and only if m(S) = f(n)
G H J
Source: IMO Shortlist 2000, C3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#1 • 6 Y
Y by Adventure10, junioragd, and 4 other users
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
This post has been edited 1 time. Last edited by djmathman, Oct 3, 2016, 3:25 AM
Reason: changed formatting to match imo compendium
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Thjch Ph4 Trjnh
205 posts
#2 • 4 Y
Y by Adventure10, Mango247, and 2 other users
$ f(n) = 2.(_4^n)$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Myth
4464 posts
#3 • 4 Y
Y by Ali3085, Adventure10, Mango247, and 1 other user
It is strange to see such an easy and evident problem in IMO SL.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SnowEverywhere
801 posts
#4 • 12 Y
Y by Catalanfury, Vaijan_Mama, k12byda5h, DCMaths, Adventure10, Mango247, Stuffybear, winniep008hfi, and 4 other users
We claim that the function $f(n)=2 \binom{n}{4}$ satisfies the requirements.

Let the score $s(a,b,c,d)$ of the four points $P_a$, $P_b$, $P_c$ and $P_d$ be the number of points $P_i$ where $i \in \{a,b,c,d \}$ such that $P_i$ is properly contained in the circle passing through the remaining three points. Observe that

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d)\]

First we prove the following lemma.

Lemma 1. The score of a convex quadrilateral $2$.

Proof. Let the vertices of the convex quadrilateral be denoted as $A, B, C$ and $D$. We have that point $D$ lies within the circumcircle of $\triangle{ABC}$ if and only if

\[\angle{ABC} > 180 - \angle{ADC} \quad \Leftrightarrow \quad \angle{ABC} + \angle{ADC} > 180\]

Therefore if $D$ lies within the circumcircle of $\triangle{ABC}$, it also follows by symmetry that $B$ lies within the circumcircle of $\triangle{ADC}$. If not, then since the sum of the interior angles of $ABCD$ is $360$,

\[\angle{ABC} + \angle{ADC} < 180 \quad \Rightarrow \quad \angle{BAD} + \angle{ACD} > 180\]

Therefore $A$ lies within the circumcircle of $\triangle{BCD}$ and $C$ lies within the circumcircle of $\triangle{ABD}$. In both cases, the score of $ABCD$ is equal to $2$.

Lemma 2. The score of a concave quadrilateral is $1$.

Proof. Let $ABCD$ denote the concave quadrilateral. Without the loss of generality, let $A$ be such that interior angle $\angle{BAC} > 180$. It follows that $A$ lies in the interior of triangle $\triangle{BCD}$. Therefore, the circumcircle of $\triangle{BCD}$ contains $A$. However, none of the remaining three circles passing through three of the points $A, B, C$ and $D$ contain the remaining point. Hence the score of $ABCD$ is equal to $1$.

If Direction. If the vertices of $S$ form a convex $n$-gon, then each quadrilateral formed by four distinct points in $S$ is a convex quadrilateral and therefore

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) = 2 \binom{n}{4}\]

Only If Direction. If the vertices of $S$ form a concave $n$-gon, then at least one of the quadrilaterals formed by four distinct points in $S$ is a concave quadrilateral and therefore

\[m(S) = \sum_{1 \le a<b<c<d \le n} s(a,b,c,d) < 2 \binom{n}{4}\]

The function $f(n)=2 \binom{n}{4}$ therefore satisfies that $m(S)=f(n)$ if and only if the points in $S$ are the vertices of a convex polygon.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JackXD
151 posts
#5 • 1 Y
Y by Adventure10
Lemma Every quadrilateral $S$ satisfies $m(S) \le 2$ with equality if and only if it is convex,

Proof:If a quadrilateral $ABCD$ is convex then one out of $\angle{ABC}+\angle{ADC}$ and $\angle{DAB}+\angle{DCB}$ is greater than $\pi$ and the other is less than $\pi$.This implies $m(S)=2$.One the other hand if it is concave then clearly $m(S)=1$


Back to our main problem.If S forms a convex polygon then every quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes $1$ to two of $a_{i},a_{j},a_{k}$ and $a_{l}$ (from the lemma) and thus contributes two to $m(S)$.This immediately implies $f(n)=2\binom{n}{4}$

Now let $m(S)=f(n)=2\binom{n}{4}$.Each quadrilateral $P_{i}P_{j}P_{k}P_{l}$ contributes atmost $2$ to $f(n)$ and thus $m(S) \le 2\binom{n}{4}$.As there is equality,we have that each quadrilateral contributes exactly $2$ to $f(n)$,hence from the lemma every quadrilateral is convex,implying that $S$ forms a convex polygon.
This post has been edited 3 times. Last edited by JackXD, Jan 7, 2016, 4:22 PM
Reason: xx
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
william122
1576 posts
#6 • 2 Y
Y by Adventure10, Mango247
Note that given any 4 points, they add 2 to the count if their convex hull is a quadrilateral, and 1 otherwise. So, $f(n)=2\binom{n}{2}$, with equality achieved iff all quadruplets of points form convex quadrilaterals. However, if there exists a point $P_i$ inside the convex hull $Q_1,Q_2,\ldots,Q_k$, then it must be in one of the triangles $Q_1Q_2Q_3$, $Q_1Q_3Q_4,\ldots Q_1Q_{k-1}Q_k$, which cover the convex hull. So, there exist 4 points whose convex hull is a triangle. Therefore, the only way equality is reached is if all points are on the convex hull, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
niyu
830 posts
#7
Y by
The key idea is to consider four-tuples.

Lemma: If $ABCD$ is a non-cyclic convex quadrilateral, $m(ABCD) = 2$.

Proof: Suppose $ABCD$ is convex and non-cyclic. Note that $\angle ABC + \angle ADC \neq \angle BCD + \angle BAD \neq 180^\circ$. Hence, exactly one of these two sums is greater than $180^\circ$. WLOG, suppose $\angle ABC + \angle ADC > 180^\circ$ and $\angle BCD + \angle BAD < 180^\circ$. Since $\angle ABC > 180^\circ - \angle ADC$ it follows that $B$ lies within $(ADC)$. Similarly, $D$ lies within $(ABC)$. Meanwhile, since $\angle BCD < 180^\circ - \angle BAD$, it follows that $A$ does not lie within $(BCD)$, and similarly, $C$ does not lie within $(ABD)$. This implies that $m(ABCD) = 2$, proving the lemma. $\blacksquare$

Lemma: If $ABCD$ is a concave quadrilateral, $m(ABCD) = 1$.

Proof: Say $\angle BAD > 180^\circ$. Since $A$ and $C$ both lie on the same side of $\overline{BD}$, and $\angle BCD < \angle BAD$, it follows that $C$ does not lie within $(ABD)$, while $A$ lies within $(BCD)$. Meanwhile, since $\angle ABC + \angle ADC < 180^\circ$, by the same argument as in the previous lemma we find that $B$ does not lie within $(ACD)$ and that $D$ does not lie within $(ABC)$. Hence, $m(ABCD) = 1$. $\blacksquare$

We now return to the given problem. We claim that $m(S) \leq 2\binom{n}{4}$, and that equality holds iff the points of $S$ form a convex quadrilateral. Indeed, as no four points in $S$ are concyclic, we have
\begin{align*}
	m(S) &= \sum_{1 \leq w < x < y < z \leq n} m(P_wP_xP_yP_z) \\
	&\leq \sum_{1 \leq w < x < y < z \leq n} 2 \\
	&\leq 2\binom{n}{4}.
\end{align*}Equality holds here iff each of the quadrilaterals $P_wP_xP_yP_z$ is convex, which occurs iff the points of $S$ form a cyclic quadrilateral. This completes the proof. $\Box$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bluelinfish
1449 posts
#8
Y by
Rather easy for a C3.

All angles are in degrees.

Claim: Suppose $Q$ consists of four points $A,B,C,D$. Then $m(Q)$ is $2$ if $A,B,C,D$ form a convex quadrilateral and $1$ otherwise.
Proof. Notice that if $A,B,C,D$ form a convex quadrilateral, then $D$ appears inside the circumcircle of $ABC$, $\angle D$ must be greater than $180-\angle B$, which is equivalent to $\angle B + \angle D >180$. Since exactly one opposite pair of angles sum to greater than $180$ degrees, there will be exactly two points that are contained in the circumcircle of the other three.

If $A,B,C,D$ are not convex, WLOG let $A,B,C$ be the convex hull. Then it is clear that the only point that is contained in the circumcircle of the other three is $D$. $\blacksquare$

The key step is to notice that $$m(S)=\sum_{1\le a<b<c<d\le n} m\left(\{P_a,P_b,P_c,P_d\}\right)$$because both quantities count the amount of ordered pairs containing a single point of $S$ and a set of three points in $S$, with all four points distinct, such that the single point is inside the circumcircle of the three points.

Using our claim, $m(S)$ must be equal to twice the number of four-point subsets of $S$ that consist of points forming a convex quadrilateral plus the four-point subsets of $S$ that do not. Moreover, every subset of four points form a convex quadrilateral iff $S$ does, so $m(S)=2\binom{n}{4}$ iff $S$ forms a convex quadrilateral. We are done.
This post has been edited 1 time. Last edited by bluelinfish, Jan 18, 2022, 10:45 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
awesomeming327.
1732 posts
#9 • 3 Y
Y by Mango247, Mango247, Mango247
Let $m(\{a,b,c,d\})$ be the number $m(S)$ for the quadrilateral $P_aP_bP_cP_d.$ It is easy to see that $m(S)$ is the sum of $m(\{a,b,c,d\})$ for all choices of subset $\{a,b,c,d\} \subseteq S$. Note that $(P_aP_bP_c)$ contains $P_d$ if only $P_d$ lies inside of the angle $P_aP_bP_c$ and $\angle P_b+\angle P_d> 180^\circ.$ Clearly, when $P_aP_bP_cP_d$ then $m(a,b,c,d)=2$ and when it is nonconvex $m(a,b,c,d)=1$. Therefore, $m(S)=2\tbinom{n}4$ if and only if $S$ is convex.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
john0512
4190 posts
#10
Y by
Note that by swapping the order of summation, $m(S)$ is equal to the number of quadruples of points $(A,B,C,D)$ where $D$ is inside $(ABC)$ and $A,B,C$ are unordered.

Claim: Each set of 4 points contributes $2$ if they are convex, and $1$ if they are not.

If $ABCD$ is convex and non-cyclic, then we either have $\angle A+\angle C>180$ or $\angle B+\angle D>180$ but not both. However, since $A$ is inside $(BCD)$ if and only if $\angle A+\angle C>180$, etc, the convex quadriateral contributes $2$. If $D$ is inside $\triangle ABC$, then $D$ will be inside $(ABC)$ but nothing else works.

Thus, the maximum possible value of $m(S)$ is $2{n\choose 4}$, with equality if and only if each quadrilateral is convex, which is the same as saying the entire set is convex. We are done as $f(n)=2{n\choose 4}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
asdf334
7585 posts
#11
Y by
For any four points $S'=\{P_a,P_b,P_c,P_d\}$ count the value $m(S')$. Notice this is either $2$ if the convex hull is a quadrilateral (i.e. the points form a convex polygon) and $1$ if the convex hull is a triangle (i.e. there is an interior point).
Clearly $f(n)$ is the sum of $m(S')$ over all such $S'$. Hence the maximum occurs if every convex hull of four points is a quadrilateral. If the points of $S$ are the vertices of a convex polygon this occurs. If the points of $S$ are not the vertices of a convex polygon then triangulate the convex hull. Any interior point is contained in a triangle and for these four points we have $m(S')=1$. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
onyqz
195 posts
#12
Y by
storage
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maximilian113
575 posts
#13
Y by
Observe that in any $4$ points $A, B, C, D,$ if they form a convex polygon there are $2$ pairs of the form $(i, \omega)$ where $i$ is a point from $A, B, C, D$ and $\omega$ is the circumcircle of the other points. However if they form a non-convex polygon there is $1$ only.

Clearly, if we consider all quadruples of points from our $n$ points, and sum up the number of valid pairs, every point, along with a circumcircle it lies in, is counted. In addition, the point and circumcircle pair uniquely determines which quadruple it was counted in, meaning that this count yields a injection and surjection to $m(S),$ so there is a bijection.

Therefore if $x$ quadruples are convex and $y$ are concave, $$m(S) = 2x+y.$$But $x+y=\binom{n}{4}$ so $$m(S)=\binom{n}{4}+x,$$and the desired result follows. QED
Z K Y
N Quick Reply
G
H
=
a