Y by
Problem. Let
be positive real variables. Prove that
Edit: Thank you, Nguyenhuyen-AG


![$$\iff \sum_{\mathrm{cyc}}\frac{(a-b)^2}{b}\ge \frac{1}{a^2+b^2+c^2}\cdot\left[a(b-c)^2+b(c-a)^2+c(a-b)^2+\frac{1}{2}(a+b+c)\big((a-b)^2+(b-c)^2+(c-a)^2\big)\right]$$](//latex.artofproblemsolving.com/b/6/b/b6b4e84a550f4308cb4b9a5afe17ace9b808bc36.png)
I think someone will complete it by
method.




![$$\iff \sum_{\mathrm{cyc}}\frac{(a-b)^2}{b}\ge \frac{1}{a^2+b^2+c^2}\cdot\left[a(b-c)^2+b(c-a)^2+c(a-b)^2+\frac{1}{2}(a+b+c)\big((a-b)^2+(b-c)^2+(c-a)^2\big)\right]$$](http://latex.artofproblemsolving.com/b/6/b/b6b4e84a550f4308cb4b9a5afe17ace9b808bc36.png)
![$$\iff \sum_{\mathrm{cyc}}(a-b)^2\left[\frac{1}{b}-\frac{a+b+3c}{2(a^2+b^2+c^2)}\right]\ge 0.$$](http://latex.artofproblemsolving.com/a/9/c/a9ca83aa0efd15cc70cd608655eec335ad303166.png)

This post has been edited 1 time. Last edited by KhuongTrang, Mar 30, 2025, 3:57 AM
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.