Y by Adventure10, Mango247
1. Let the
are positive numbers. Prove that ![\[\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+24\cdot\dfrac{\sqrt[3]{abc}}{a+b+c}\geq 11.\]](//latex.artofproblemsolving.com/1/3/3/133528c378ea6bb72d534414b1dfe3a84e46f777.png)
2. Let
,
and
are positives. Prove that ![\[\frac{(a+b)(b+c)(c+a)}{abc}\ge\frac{17(a+b+c)}{3\sqrt[3]{abc}}-9. \]](//latex.artofproblemsolving.com/a/9/e/a9e476212a87aa50470f113d05c946ce3276e616.png)
3. Let
,
and
are positive numbers. Prove that
![\[ \sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\ge \sqrt{ 11\cdot\frac{a+b+c}{\sqrt[3]{abc}}-15 }.\]](//latex.artofproblemsolving.com/e/4/3/e43ce425c843181d8f76e8975496a14c6d231213.png)
4. Let
,
and
are positive numbers. Prove that ![\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\sqrt{15\cdot\frac{a^2+b^2+c^2}{ab+bc+ca}-6}.\]](//latex.artofproblemsolving.com/4/0/d/40db9f980fd659e134477be5690644f4810dbfcc.png)
5. For positives
,
and
prove that
![\[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{9abc}{a^2+b^2+c^2}\ge 2(a+b+c).\]](//latex.artofproblemsolving.com/6/c/e/6ceb38df797ff34e4264361ef3fc5d837b7f45a4.png)
6. For positives
,
and
prove that ![\[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq\frac{37(a^2+b^2+c^2)-19(ab+ac+bc)}{6(a+b+c)}.\]](//latex.artofproblemsolving.com/a/b/1/ab17eb90ce1d96142dd1daa801135121f48af422.png)
7. For positives
,
and
prove that ![\[(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq9\left(\frac{a^2+b^2+c^2}{ab+ac+bc}\right)^{\frac{4}{7}}.\]](//latex.artofproblemsolving.com/6/c/0/6c092d438e41b1b7c76fddc8fc0ff358dc0086ca.png)
8. Let
,
and
are non-negative numbers such that
. Prove that
![\[\sqrt a + \sqrt b + \sqrt c \ge \sqrt[7]{{9{{(ab + bc + ca)}^5}}}.\]](//latex.artofproblemsolving.com/1/6/0/16067b3123264797bbb34135148415c44b476403.png)

![\[\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+24\cdot\dfrac{\sqrt[3]{abc}}{a+b+c}\geq 11.\]](http://latex.artofproblemsolving.com/1/3/3/133528c378ea6bb72d534414b1dfe3a84e46f777.png)
2. Let



![\[\frac{(a+b)(b+c)(c+a)}{abc}\ge\frac{17(a+b+c)}{3\sqrt[3]{abc}}-9. \]](http://latex.artofproblemsolving.com/a/9/e/a9e476212a87aa50470f113d05c946ce3276e616.png)
3. Let



![\[ \sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\ge \sqrt{ 11\cdot\frac{a+b+c}{\sqrt[3]{abc}}-15 }.\]](http://latex.artofproblemsolving.com/e/4/3/e43ce425c843181d8f76e8975496a14c6d231213.png)
4. Let



![\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\sqrt{15\cdot\frac{a^2+b^2+c^2}{ab+bc+ca}-6}.\]](http://latex.artofproblemsolving.com/4/0/d/40db9f980fd659e134477be5690644f4810dbfcc.png)
5. For positives



![\[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+\frac{9abc}{a^2+b^2+c^2}\ge 2(a+b+c).\]](http://latex.artofproblemsolving.com/6/c/e/6ceb38df797ff34e4264361ef3fc5d837b7f45a4.png)
6. For positives



![\[\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq\frac{37(a^2+b^2+c^2)-19(ab+ac+bc)}{6(a+b+c)}.\]](http://latex.artofproblemsolving.com/a/b/1/ab17eb90ce1d96142dd1daa801135121f48af422.png)
7. For positives



![\[(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq9\left(\frac{a^2+b^2+c^2}{ab+ac+bc}\right)^{\frac{4}{7}}.\]](http://latex.artofproblemsolving.com/6/c/0/6c092d438e41b1b7c76fddc8fc0ff358dc0086ca.png)
8. Let




![\[\sqrt a + \sqrt b + \sqrt c \ge \sqrt[7]{{9{{(ab + bc + ca)}^5}}}.\]](http://latex.artofproblemsolving.com/1/6/0/16067b3123264797bbb34135148415c44b476403.png)
This post has been edited 2 times. Last edited by Nguyenhuyen_AG, May 17, 2012, 4:05 PM