Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Jane street swag package? USA(J)MO
arfekete   28
N 16 minutes ago by vsarg
Hey! People are starting to get their swag packages from Jane Street for qualifying for USA(J)MO, and after some initial discussion on what we got, people are getting different things. Out of curiosity, I was wondering how they decide who gets what.
Please enter the following info:

- USAMO or USAJMO
- Grade
- Score
- Award/Medal/HM
- MOP (yes or no, if yes then color)
- List of items you got in your package

I will reply with my info as an example.
28 replies
1 viewing
arfekete
May 7, 2025
vsarg
16 minutes ago
Goals for 2025-2026
Airbus320-214   89
N an hour ago by TalentedElephant41
Please write down your goal/goals for competitions here for 2025-2026.
89 replies
Airbus320-214
Yesterday at 8:00 AM
TalentedElephant41
an hour ago
USAMO 2002 Problem 2
MithsApprentice   34
N an hour ago by Giant_PT
Let $ABC$ be a triangle such that
\[ \left( \cot \dfrac{A}{2} \right)^2 + \left( 2\cot \dfrac{B}{2} \right)^2 + \left( 3\cot \dfrac{C}{2} \right)^2 = \left( \dfrac{6s}{7r} \right)^2,  \]
where $s$ and $r$ denote its semiperimeter and its inradius, respectively. Prove that triangle $ABC$ is similar to a triangle $T$ whose side lengths are all positive integers with no common divisors and determine these integers.
34 replies
MithsApprentice
Sep 30, 2005
Giant_PT
an hour ago
Another config geo with concurrent lines
a_507_bc   17
N an hour ago by Rayvhs
Source: BMO SL 2023 G5
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
17 replies
a_507_bc
May 3, 2024
Rayvhs
an hour ago
Nice sequence problem.
mathlover1231   1
N 2 hours ago by vgtcross
Source: Own
Scientists found a new species of bird called “N-coloured rainbow”. They also found out 3 interesting facts about the bird’s life: 1) every day, N-coloured rainbow is coloured in one of N colors.
2) every day, the color is different from yesterday (not every previous day, just yesterday).
3) there are no four days i, j, k, l in the bird’s life such that i<j<k<l with colours a, b, c, d respectively for which a=c ≠ b=d.
Find the greatest possible age (in days) of this bird as a function of N.
1 reply
mathlover1231
Apr 10, 2025
vgtcross
2 hours ago
Three circles are concurrent
Twoisaprime   23
N 2 hours ago by Curious_Droid
Source: RMM 2025 P5
Let triangle $ABC$ be an acute triangle with $AB<AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. Let $\Gamma$ be the circle $BOC$. The line $AO$ and the circle of radius $AO$ centered at $A$ cross $\Gamma$ at $A’$ and $F$, respectively. Prove that $\Gamma$ , the circle on diameter $AA’$ and circle $AFH$ are concurrent.
Proposed by Romania, Radu-Andrew Lecoiu
23 replies
Twoisaprime
Feb 13, 2025
Curious_Droid
2 hours ago
|a_i/a_j - a_k/a_l| <= C
mathwizard888   32
N 2 hours ago by ezpotd
Source: 2016 IMO Shortlist A2
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that
\[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
32 replies
mathwizard888
Jul 19, 2017
ezpotd
2 hours ago
Two lines meeting on circumcircle
Zhero   54
N 2 hours ago by Ilikeminecraft
Source: ELMO Shortlist 2010, G4; also ELMO #6
Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.

Amol Aggarwal.
54 replies
Zhero
Jul 5, 2012
Ilikeminecraft
2 hours ago
Help me this problem. Thank you
illybest   3
N 3 hours ago by jasperE3
Find f: R->R such that
f( xy + f(z) ) = (( xf(y) + yf(x) )/2) + z
3 replies
illybest
Today at 11:05 AM
jasperE3
3 hours ago
9 JMO<200?
DreamineYT   3
N 3 hours ago by imbadatmath1233
Just wanted to ask
3 replies
DreamineYT
May 10, 2025
imbadatmath1233
3 hours ago
[Signups Now!] - Inaugural Academy Math Tournament
elements2015   0
3 hours ago
Hello!

Pace Academy, from Atlanta, Georgia, is thrilled to host our Inaugural Academy Math Tournament online through Saturday, May 31.

AOPS students are welcome to participate online, as teams or as individuals (results will be reported separately for AOPS and Georgia competitors). The difficulty of the competition ranges from early AMC to mid-late AIME, and is 2 hours long with multiple sections. The format is explained in more detail below. If you just want to sign up, here's the link:

https://forms.gle/ih548axqQ9qLz3pk7

If participating as a team, each competitor must sign up individually and coordinate team names!

Detailed information below:

Divisions & Teams
[list]
[*] Junior Varsity: Students in 10th grade or below who are enrolled in Algebra 2 or below.
[*] Varsity: All other students.
[*] Teams of up to four students compete together in the same division.
[list]
[*] (If you have two JV‑eligible and two Varsity‑eligible students, you may enter either two teams of two or one four‑student team in Varsity.)
[*] You may enter multiple teams from your school in either division.
[*] Teams need not compete at the same time. Each individual will complete the test alone, and team scores will be the sum of individual scores.
[/list]
[/list]
Competition Format
Both sections—Sprint and Challenge—will be administered consecutively in a single, individually completed 120-minute test. Students may allocate time between the sections however they wish to.

[list=1]
[*] Sprint Section
[list]
[*] 25 multiple‑choice questions (five choices each)
[*] recommended 2 minutes per question
[*] 6 points per correct answer; no penalty for guessing
[/list]

[*] Challenge Section
[list]
[*] 18 open‑ended questions
[*] answers are integers between 1 and 10,000
[*] recommended 3 or 4 minutes per question
[*] 8 points each
[/list]
[/list]
You may use blank scratch/graph paper, rulers, compasses, protractors, and erasers. No calculators are allowed on this examination.

Awards & Scoring
[list]
[*] There are no cash prizes.
[*] Team Awards: Based on the sum of individual scores (four‑student teams have the advantage). Top 8 teams in each division will be recognized.
[*] Individual Awards: Top 8 individuals in each division, determined by combined Sprint + Challenge scores, will receive recognition.
[/list]
How to Sign Up
Please have EACH STUDENT INDIVIDUALLY reserve a 120-minute window for your team's online test in THIS GOOGLE FORM:
https://forms.gle/ih548axqQ9qLz3pk7
EACH STUDENT MUST REPLY INDIVIDUALLY TO THE GOOGLE FORM.
You may select any slot from now through May 31, weekdays or weekends. You will receive an email with the questions and a form for answers at the time you receive the competition. There will be a 15-minute grace period for entering answers after the competition.
0 replies
elements2015
3 hours ago
0 replies
line JK of intersection points of 2 lines passes through the midpoint of BC
parmenides51   4
N 3 hours ago by reni_wee
Source: Rioplatense Olympiad 2018 level 3 p4
Let $ABC$ be an acute triangle with $AC> AB$. be $\Gamma$ the circumcircle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smallest arc $BC$ of this circle. Let $E$ and $F$ points of the segments $AB$ and $AC$ respectively such that $AE = AF$. Let $P \neq A$ be the second intersection point of the circumcircle circumscribed to $AEF$ with $\Gamma$. Let $G$ and $H$ be the intersections of lines $PE$ and $PF$ with $\Gamma$ other than $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines $AB$ and $AC$ respectively. Show that the $JK$ line passes through the midpoint of $BC$
4 replies
parmenides51
Dec 11, 2018
reni_wee
3 hours ago
AGM Problem(Turkey JBMO TST 2025)
HeshTarg   3
N 3 hours ago by ehuseyinyigit
Source: Turkey JBMO TST Problem 6
Given that $x, y, z > 1$ are real numbers, find the smallest possible value of the expression:
$\frac{x^3 + 1}{(y-1)(z+1)} + \frac{y^3 + 1}{(z-1)(x+1)} + \frac{z^3 + 1}{(x-1)(y+1)}$
3 replies
HeshTarg
4 hours ago
ehuseyinyigit
3 hours ago
Shortest number theory you might've seen in your life
AlperenINAN   8
N 4 hours ago by HeshTarg
Source: Turkey JBMO TST 2025 P4
Let $p$ and $q$ be prime numbers. Prove that if $pq(p+1)(q+1)+1$ is a perfect square, then $pq + 1$ is also a perfect square.
8 replies
AlperenINAN
Yesterday at 7:51 PM
HeshTarg
4 hours ago
9 Practice AIME Exam
Melissa.   22
N Apr 12, 2025 by jb2015007
(This practice test is designed to be slightly harder than the real test. I would recommend you take this like a real test, using a 3 hour time limit and no calculator.)

Let me know any suggestions for improvement on test quality, difficulty, problem selection, problem placement, test topics, etc. for the next tests that I make!

Practice AIME

1.
Positive integers a, b, and c satisfy a + b + c = 49 and ab + bc + ca = 471. Find the value of the product abc.

2.
Find the integer closest to the value of (69^(1/2) + 420^(1/2))^2.

3.
Let G and A be two points that are 243 units apart. Suppose A_1 is at G, and for n > 1, A_n is the point on line GA such that A_nA_(n-1) = 243, and A_n is farther from A than G. Let L be the locus of points T such that GT + A_6T = 2025. Find the maximum possible distance from T to line GA as T varies across L.

4.
Find the value of (69 + 12 * 33^(1/2))^(1/2) + (69 - 12 * 33^(1/2))^(1/2).

5.
Find the sum of the numerator and denominator of the probability that two (not necessarily distinct) randomly chosen positive integer divisors of 900 are relatively prime, when expressed as a fraction in lowest terms.

6.
Find the limit of (1x^2 + 345x^6)/(5x^6 + 78x + 90) as x approaches infinity.

7.
Find the slope of the line tangent to the graph of y = 6x^2 + 9x + 420 at the point where y = 615 and x is positive.

8.
Find the smallest positive integer n such that the sum of the positive integer divisors of n is 1344.

9.
Find the first 3 digits after the decimal point in the decimal expansion of the square root of 911.

10.
Let n be the smallest positive integer in base 10 such that the base 2 expression of 60n contains an odd number of 1’s. Find the sum of the squares of the digits of n.

11.
Find the sum of the 7 smallest positive integers n such that n is a multiple of 7, and the repeating decimal expansion of 1/n does not have a period of 6.

12.
Let n be an integer from 1 to 999, inclusive. How many different numerators are possible when n/1000 is written as a common fraction in lowest terms?

13.
How many ways are there to divide a pile of 15 indistinguishable bricks?

14.
Let n be the unique 3-digit positive integer such that the value of the product 100n can be expressed in bases b, b + 1, b + 2, and b + 3 using only 0’s and 1’s, for some integer b > 1. Find n.

15.
For positive integers n, let f(n) be the sum of the positive integer divisors of n. Suppose a positive integer k is untouchable if there does not exist a positive integer a such that f(a) = k + a. For example, the integers 2 and 5 are untouchable, by the above definition. Find the next smallest integer after 2 and 5 that is untouchable.

Answer key:
WARNING: SPOILERS!!!
22 replies
Melissa.
Apr 8, 2025
jb2015007
Apr 12, 2025
Practice AIME Exam
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Melissa.
6 posts
#1
Y by
9Poll:
How many questions did you solve correctly within 3 hours?
74 Votes
5%
(4)
3%
(2)
1%
(1)
3%
(2)
1%
(1)
1%
(1)
1%
(1)
4%
(3)
1%
(1)
5%
(4)
3%
(2)
7%
(5)
1%
(1)
4%
(3)
1%
(1)
57%
(42)
Hide Results Show Results
You must be signed in to vote.
(This practice test is designed to be slightly harder than the real test. I would recommend you take this like a real test, using a 3 hour time limit and no calculator.)

Let me know any suggestions for improvement on test quality, difficulty, problem selection, problem placement, test topics, etc. for the next tests that I make!

Practice AIME

1.
Positive integers a, b, and c satisfy a + b + c = 49 and ab + bc + ca = 471. Find the value of the product abc.

2.
Find the integer closest to the value of (69^(1/2) + 420^(1/2))^2.

3.
Let G and A be two points that are 243 units apart. Suppose A_1 is at G, and for n > 1, A_n is the point on line GA such that A_nA_(n-1) = 243, and A_n is farther from A than G. Let L be the locus of points T such that GT + A_6T = 2025. Find the maximum possible distance from T to line GA as T varies across L.

4.
Find the value of (69 + 12 * 33^(1/2))^(1/2) + (69 - 12 * 33^(1/2))^(1/2).

5.
Find the sum of the numerator and denominator of the probability that two (not necessarily distinct) randomly chosen positive integer divisors of 900 are relatively prime, when expressed as a fraction in lowest terms.

6.
Find the limit of (1x^2 + 345x^6)/(5x^6 + 78x + 90) as x approaches infinity.

7.
Find the slope of the line tangent to the graph of y = 6x^2 + 9x + 420 at the point where y = 615 and x is positive.

8.
Find the smallest positive integer n such that the sum of the positive integer divisors of n is 1344.

9.
Find the first 3 digits after the decimal point in the decimal expansion of the square root of 911.

10.
Let n be the smallest positive integer in base 10 such that the base 2 expression of 60n contains an odd number of 1’s. Find the sum of the squares of the digits of n.

11.
Find the sum of the 7 smallest positive integers n such that n is a multiple of 7, and the repeating decimal expansion of 1/n does not have a period of 6.

12.
Let n be an integer from 1 to 999, inclusive. How many different numerators are possible when n/1000 is written as a common fraction in lowest terms?

13.
How many ways are there to divide a pile of 15 indistinguishable bricks?

14.
Let n be the unique 3-digit positive integer such that the value of the product 100n can be expressed in bases b, b + 1, b + 2, and b + 3 using only 0’s and 1’s, for some integer b > 1. Find n.

15.
For positive integers n, let f(n) be the sum of the positive integer divisors of n. Suppose a positive integer k is untouchable if there does not exist a positive integer a such that f(a) = k + a. For example, the integers 2 and 5 are untouchable, by the above definition. Find the next smallest integer after 2 and 5 that is untouchable.

Answer key:
WARNING: SPOILERS!!!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jkim0656
1003 posts
#2
Y by
what happened to 12 on answer key?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Melissa.
6 posts
#3
Y by
jkim0656 wrote:
what happened to 12 on answer key?

Oh… I lost the answer to that one. Ima try and re-solve it to see if I can get it again.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fake123
93 posts
#4
Y by
move this to the mock contests forum
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tetra_scheme
102 posts
#5
Y by
guys please make mock contests into pdfs
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
neeyakkid23
122 posts
#6
Y by
Please latex and put into pdf
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1430 posts
#7
Y by
All of the second half problems are way easier except p14,15 which is just mem
This post has been edited 4 times. Last edited by vincentwant, Apr 8, 2025, 4:56 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Melissa.
6 posts
#8
Y by
vincentwant wrote:
All of the second half problems are way easier except p14,15 which is just mem

Wait what is wrong with 14 and 15
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Andyluo
966 posts
#9 • 1 Y
Y by MathRook7817
latexed using https://www.text2latex.com/

Practice AIME

1.
Positive integers \( a \), \( b \), and \( c \) satisfy \( a + b + c = 49 \) and \( ab + bc + ca = 471 \). Find the value of the product \( abc \).

2.
Find the integer closest to the value of \( (69^{1/2} + 420^{1/2})^2 \).

3.
Let \( G \) and \( A \) be two points that are 243 units apart. Suppose \( A_1 \) is at \( G \), and for \( n > 1 \), \( A_n \) is the point on line \( GA \) such that \( A_nA_{n-1} = 243 \), and \( A_n \) is farther from \( A \) than \( G \). Let \( L \) be the locus of points \( T \) such that \( GT + A_6T = 2025 \). Find the maximum possible distance from \( T \) to line \( GA \) as \( T \) varies across \( L \).

4.
Find the value of \( (69 + 12 \cdot 33^{1/2})^{1/2} + (69 - 12 \cdot 33^{1/2})^{1/2} \).

5.
Find the sum of the numerator and denominator of the probability that two (not necessarily distinct) randomly chosen positive integer divisors of 900 are relatively prime, when expressed as a fraction in lowest terms.

6.
Find the limit of \( \frac{1x^2 + 345x^6}{5x^6 + 78x + 90} \) as \( x \) approaches infinity.

7.
Find the slope of the line tangent to the graph of \( y = 6x^2 + 9x + 420 \) at the point where \( y = 615 \) and \( x \) is positive.

8.
Find the smallest positive integer \( n \) such that the sum of the positive integer divisors of \( n \) is 1344.

9.
Find the first 3 digits after the decimal point in the decimal expansion of the square root of 911.

10.
Let \( n \) be the smallest positive integer in base 10 such that the base 2 expression of \( 60n \) contains an odd number of 1’s. Find the sum of the squares of the digits of \( n \).

11.
Find the sum of the 7 smallest positive integers \( n \) such that \( n \) is a multiple of 7, and the repeating decimal expansion of \( 1/n \) does not have a period of 6.

12.
Let \( n \) be an integer from 1 to 999, inclusive. How many different numerators are possible when \( n/1000 \) is written as a common fraction in lowest terms?

13.
How many ways are there to divide a pile of $15$ indistinguishable bricks?

14.
Let \( n \) be the unique 3-digit positive integer such that the value of the product \( 100n \) can be expressed in bases \( b \), \( b + 1 \), \( b + 2 \), and \( b + 3 \) using only 0’s and 1’s, for some integer \( b > 1 \). Find \( n \).

15.
For positive integers \( n \), let \( f(n) \) be the sum of the positive integer divisors of \( n \). Suppose a positive integer \( k \) is untouchable if there does not exist a positive integer \( a \) such that \( f(a) = k + a \). For example, the integers 2 and 5 are untouchable, by the above definition. Find the next smallest integer after 2 and 5 that is untouchable.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
c_double_sharp
316 posts
#10
Y by
#6 is just the average precalc problem
#7 is free with power rule
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hashbrown2009
193 posts
#11
Y by
I would argue this is actually easier than the recent AIME exams but I still did bad and got 13
I got #6 wrong because I am dumb
I got #15 wrong, #15 is actually decently hard
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sanaops9
833 posts
#12
Y by
personally there's quite a few problems that are straight applications of formulas or concepts (ex. #6, #7, #13, actually these might be the only ones). some of the problems are like aime difficulty tho
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
338 posts
#13
Y by
sanaops9 wrote:
personally there's quite a few problems that are straight applications of formulas or concepts (ex. #6, #7, #13, actually these might be the only ones). some of the problems are like aime difficulty tho

yea p6 is not aime style because they wouldnt directly put limits nor do they put just conceptual questions on the test
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
338 posts
#14
Y by
mathprodigy2011 wrote:
sanaops9 wrote:
personally there's quite a few problems that are straight applications of formulas or concepts (ex. #6, #7, #13, actually these might be the only ones). some of the problems are like aime difficulty tho

yea p6 is not aime style because they wouldnt directly put limits nor do they put just conceptual questions on the test. Also p7 is just derivatives if u know it.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hashbrown2009
193 posts
#15
Y by
mathprodigy2011 wrote:
sanaops9 wrote:
personally there's quite a few problems that are straight applications of formulas or concepts (ex. #6, #7, #13, actually these might be the only ones). some of the problems are like aime difficulty tho

yea p6 is not aime style because they wouldnt directly put limits nor do they put just conceptual questions on the test

Agreed.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kamuii
231 posts
#16
Y by
7 (with a knowledge of derivatives) is rlly high up imo
4 is trivial IA
This post has been edited 1 time. Last edited by kamuii, Apr 9, 2025, 9:42 PM
Reason: f
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
338 posts
#17
Y by
and p9 is just outright annoying, not aime style.(also p13 should specify whether just 1 pile counts as dividing) Some feedback for this question set, would be to make very long annoying problems instead of problems that are decently tricky but conceptually easy to understand(lots of aime problems are hard just because it is hard to comprehend)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fake123
93 posts
#18
Y by
also why si the subject distribution so bad
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NamelyOrange
509 posts
#19
Y by
mathprodigy2011 wrote:
and p9 is just outright annoying, not aime style.(also p13 should specify whether just 1 pile counts as dividing) Some feedback for this question set, would be to make very long annoying problems instead of problems that are decently tricky but conceptually easy to understand(lots of aime problems are hard just because it is hard to comprehend)

I suppose the point of this is using the fractional binomial theorem? It's still pretty annoying with it though...
This post has been edited 1 time. Last edited by NamelyOrange, Apr 10, 2025, 12:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathprodigy2011
338 posts
#20
Y by
NamelyOrange wrote:
mathprodigy2011 wrote:
and p9 is just outright annoying, not aime style.(also p13 should specify whether just 1 pile counts as dividing) Some feedback for this question set, would be to make very long annoying problems instead of problems that are decently tricky but conceptually easy to understand(lots of aime problems are hard just because it is hard to comprehend)

I suppose the point of this is using the fractional binomial theorem? It's still pretty annoying with it though...

yeah its just a lot of work that most people know how to do.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
martianrunner
202 posts
#21
Y by
no regular geo (just two analytical geo problems), which is odd

no complex problems

and no trig problems

wayyyy too much nt

this isnt akin to an aime
This post has been edited 1 time. Last edited by martianrunner, Apr 11, 2025, 6:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RandomMathGuy500
59 posts
#22
Y by
way too straightforward math. It's like a school test which it shouldn't be. Especially P8+9
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jb2015007
1962 posts
#23
Y by
bro what is p13 :skull:
so unoriginal lol
even i solved
Z K Y
N Quick Reply
G
H
=
a