Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
2-var inequality
sqing   1
N 42 minutes ago by sqing
Source: Own
Let $ a,b> 0 , ab(a+b+1) =3.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{24}{(a+b)^2} \geq 8$$$$ \frac{a}{b^2}+\frac{b}{a^2}+\frac{49}{(a+  b)^2} \geq \frac{57}{4}$$Let $ a,b> 0 ,  (a+b)(ab+1) =4.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{40}{(a+b)^2} \geq 12$$$$\frac{a}{b^2}+\frac{b}{a^2}+\frac{76}{(a+ b)^2}  \geq 21$$
1 reply
sqing
an hour ago
sqing
42 minutes ago
Balkan Mathematical Olympiad
ABCD1728   1
N an hour ago by ABCD1728
Can anyone provide the PDF version of the book "Balkan Mathematical Olympiads" by Mircea Becheanu and Bogdan Enescu (published by XYZ press in 2014), thanks!
1 reply
ABCD1728
Yesterday at 11:27 PM
ABCD1728
an hour ago
Functional equation
shactal   0
an hour ago
Let $f:\mathbb R\to \mathbb R$ a function satifying $$f(x+2xy) = f(x) + 2f(xy)$$for all $x,y\in \mathbb R$.
If $f(1991)=a$, then what is $f(1992)$, the answer is in terms of $a$.
0 replies
shactal
an hour ago
0 replies
area of quadrilateral
AlanLG   1
N an hour ago by Altronrren
Source: 3rd National Women´s Contest of Mexican Mathematics Olympiad 2024 , level 1+2 p5
Consider the acute-angled triangle \(ABC\). The segment \(BC\) measures 40 units. Let \(H\) be the orthocenter of triangle \(ABC\) and \(O\) its circumcenter. Let \(D\) be the foot of the altitude from \(A\) and \(E\) the foot of the altitude from \(B\). Additionally, point \(D\) divides the segment \(BC\) such that \(\frac{BD}{DC} = \frac{3}{5}\). If the perpendicular bisector of segment \(AC\) passes through point \(D\), calculate the area of quadrilateral \(DHEO\).
1 reply
AlanLG
Jun 14, 2024
Altronrren
an hour ago
Inspired by 2025 SXTB
sqing   1
N an hour ago by sqing
Source: Own
Let $ a,b  $ be real number such that $ a^2+b^2=\frac12. $ Prove that
$$-\frac{\sqrt{9+6\sqrt 3}}{2}\leq(a+1)^2- (b-1)^2\leq\frac{\sqrt{9+6\sqrt 3}}{2}$$Let $ x $ be real number . Prove that
$$-\frac{2\sqrt 2}{3}\leq \frac{x}{x^2+1}+ \frac{ 2x}{x^2+4} \leq\frac{2\sqrt 2}{3}$$
1 reply
sqing
2 hours ago
sqing
an hour ago
IMO Shortlist 2014 G2
hajimbrak   14
N 2 hours ago by ezpotd
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$.

Proposed by Estonia
14 replies
hajimbrak
Jul 11, 2015
ezpotd
2 hours ago
Divisiblity...
TUAN2k8   0
2 hours ago
Source: Own
Let $m$ and $n$ be two positive integer numbers such that $m \le n$.Prove that $\binom{n}{m}$ divides $lcm(1,2,...,n)$
0 replies
TUAN2k8
2 hours ago
0 replies
interesting diophantiic fe in natural numbers
skellyrah   4
N 2 hours ago by aidan0626
Find all functions \( f : \mathbb{N} \to \mathbb{N} \) such that for all \( m, n \in \mathbb{N} \),
\[
mn + f(n!) = f(f(n))! + n \cdot \gcd(f(m), m!).
\]
4 replies
skellyrah
Yesterday at 8:01 AM
aidan0626
2 hours ago
IMO 2010 Problem 4
mavropnevma   128
N 2 hours ago by ezpotd
Let $P$ be a point interior to triangle $ABC$ (with $CA \neq CB$). The lines $AP$, $BP$ and $CP$ meet again its circumcircle $\Gamma$ at $K$, $L$, respectively $M$. The tangent line at $C$ to $\Gamma$ meets the line $AB$ at $S$. Show that from $SC = SP$ follows $MK = ML$.

Proposed by Marcin E. Kuczma, Poland
128 replies
mavropnevma
Jul 8, 2010
ezpotd
2 hours ago
Simple Geometry
AbdulWaheed   5
N 2 hours ago by Adywastaken
Source: EGMO
Try to avoid Directed angles
Let ABC be an acute triangle inscribed in circle $\Omega$. Let $X$ be the midpoint of the arc $\overarc{BC}$ not containing $A$ and define $Y, Z$ similarly. Show that the orthocenter of $XYZ$ is the incenter $I$ of $ABC$.
5 replies
AbdulWaheed
May 23, 2025
Adywastaken
2 hours ago
a