Happy Memorial Day! Please note that AoPS Online is closed May 24-26th.

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Prove the inequality
Butterfly   0
2 hours ago
Let $a,b,c$ be real numbers such that $a+b+c=3$. Prove $$a^3b+b^3c+c^3a\le \frac{9}{32}(63+5\sqrt{105}).$$
0 replies
Butterfly
2 hours ago
0 replies
Functional equation
shactal   1
N 2 hours ago by ariopro1387
Let $f:\mathbb R\to \mathbb R$ a function satifying $$f(x+2xy) = f(x) + 2f(xy)$$for all $x,y\in \mathbb R$.
If $f(1991)=a$, then what is $f(1992)$, the answer is in terms of $a$.
1 reply
shactal
4 hours ago
ariopro1387
2 hours ago
interesting diophantiic fe in natural numbers
skellyrah   5
N 2 hours ago by skellyrah
Find all functions \( f : \mathbb{N} \to \mathbb{N} \) such that for all \( m, n \in \mathbb{N} \),
\[
mn + f(n!) = f(f(n))! + n \cdot \gcd(f(m), m!).
\]
5 replies
skellyrah
Yesterday at 8:01 AM
skellyrah
2 hours ago
Non-linear Recursive Sequence
amogususususus   3
N 2 hours ago by SunnyEvan
Given $a_1=1$ and the recursive relation
$$a_{i+1}=a_i+\frac{1}{a_i}$$for all natural number $i$. Find the general form of $a_n$.

Is there any way to solve this problem and similar ones?
3 replies
amogususususus
Jan 24, 2025
SunnyEvan
2 hours ago
Inspired by 2025 Beijing
sqing   6
N 3 hours ago by sqing
Source: Own
Let $ a,b,c,d >0  $ and $ (a^2+b^2+c^2)(b^2+c^2+d^2)=36. $ Prove that
$$ab^2c^2d \leq 8$$$$a^2bcd^2 \leq 16$$$$ ab^3c^3d \leq \frac{2187}{128}$$$$ a^3bcd^3 \leq \frac{2187}{32}$$
6 replies
sqing
Yesterday at 4:56 PM
sqing
3 hours ago
Serbian selection contest for the IMO 2025 - P4
OgnjenTesic   2
N 3 hours ago by sqing-inequality-BUST
Source: Serbian selection contest for the IMO 2025
For a permutation $\pi$ of the set $A = \{1, 2, \ldots, 2025\}$, define its colorfulness as the greatest natural number $k$ such that:
- For all $1 \le i, j \le 2025$, $i \ne j$, if $|i - j| < k$, then $|\pi(i) - \pi(j)| \ge k$.
What is the maximum possible colorfulness of a permutation of the set $A$? Determine how many such permutations have maximal colorfulness.

Proposed by Pavle Martinović
2 replies
OgnjenTesic
May 22, 2025
sqing-inequality-BUST
3 hours ago
Nice "if and only if" function problem
ICE_CNME_4   14
N 3 hours ago by wh0nix
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )

Please do it at 9th grade level. Thank you!
14 replies
ICE_CNME_4
Friday at 7:23 PM
wh0nix
3 hours ago
2-var inequality
sqing   1
N 3 hours ago by sqing
Source: Own
Let $ a,b> 0 , ab(a+b+1) =3.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{24}{(a+b)^2} \geq 8$$$$ \frac{a}{b^2}+\frac{b}{a^2}+\frac{49}{(a+  b)^2} \geq \frac{57}{4}$$Let $ a,b> 0 ,  (a+b)(ab+1) =4.$ Prove that$$\frac{1}{a^2}+\frac{1}{b^2}+\frac{40}{(a+b)^2} \geq 12$$$$\frac{a}{b^2}+\frac{b}{a^2}+\frac{76}{(a+ b)^2}  \geq 21$$
1 reply
sqing
4 hours ago
sqing
3 hours ago
Balkan Mathematical Olympiad
ABCD1728   1
N 3 hours ago by ABCD1728
Can anyone provide the PDF version of the book "Balkan Mathematical Olympiads" by Mircea Becheanu and Bogdan Enescu (published by XYZ press in 2014), thanks!
1 reply
ABCD1728
Yesterday at 11:27 PM
ABCD1728
3 hours ago
area of quadrilateral
AlanLG   1
N 4 hours ago by Altronrren
Source: 3rd National Women´s Contest of Mexican Mathematics Olympiad 2024 , level 1+2 p5
Consider the acute-angled triangle \(ABC\). The segment \(BC\) measures 40 units. Let \(H\) be the orthocenter of triangle \(ABC\) and \(O\) its circumcenter. Let \(D\) be the foot of the altitude from \(A\) and \(E\) the foot of the altitude from \(B\). Additionally, point \(D\) divides the segment \(BC\) such that \(\frac{BD}{DC} = \frac{3}{5}\). If the perpendicular bisector of segment \(AC\) passes through point \(D\), calculate the area of quadrilateral \(DHEO\).
1 reply
AlanLG
Jun 14, 2024
Altronrren
4 hours ago
a