Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
2-var inequality
sqing   0
2 hours ago
Source: Own
Let $ a,b\geq  0 ,a+b+ab=2.$ Prove that
$$ (a^2+\frac{27}{5}ab+b^2)(a+1)(b+1) \leq 12 $$$$ (a^2+\frac{11}{2}ab+b^2)(a+1)(b+1) \leq 45(2-\sqrt 3) $$
0 replies
sqing
2 hours ago
0 replies
circumcenter of ARS lies on AD
Melid   1
N 2 hours ago by Acrylic3491
Source: own
In triangle $ABC$, let $D$ be a point on arc $BC$ of circle $ABC$ which doesn't contain $A$. $AD$ and $BC$ intersect at $E$. Let $P$ and $Q$ be the reflection of $E$ about to $AB$ and $AC$, respectively. $PD$ intersects $AB$ at $R$, and $QD$ intersects $AC$ at $S$. Prove that circumcenter of triangle $ARS$ lies on $AD$.
1 reply
Melid
Today at 9:30 AM
Acrylic3491
2 hours ago
2-var inequality
sqing   10
N 2 hours ago by sqing
Source: Own
Let $ a,b> 0 ,a^3+ab+b^3=3.$ Prove that
$$ (a+b)(a+1)(b+1) \leq 8$$$$ (a^2+b^2)(a+1)(b+1) \leq 8$$Let $ a,b> 0 ,a^3+ab(a+b)+b^3=3.$ Prove that
$$ (a+b)(a+1)(b+1) \leq \frac{3}{2}+\sqrt[3]{6}+\sqrt[3]{36}$$
10 replies
sqing
Yesterday at 1:35 PM
sqing
2 hours ago
Inspired by Czech-Polish-Slovak 2024
sqing   1
N 2 hours ago by sqing
Source: Own
Let $ a,b,c\geq 0, (a+1)(b+ c )=2025.$ Prove that$$ a+b^2+c\geq \frac{355}{4}$$Let $ a,b,c\geq 0, (a-1)(b+ c )=2025.$ Prove that$$ a+b^2+c\geq \frac{364}{4}$$Let $ a,b,c\geq 0, (a+ 1)(b- c )=2025.$ Prove that$$ a+b^2+c\geq \frac{135 \sqrt[3]{90}-2}{2}$$
1 reply
sqing
2 hours ago
sqing
2 hours ago
FE i created on bijective function with x≠y
benjaminchew13   8
N 2 hours ago by benjaminchew13
Source: own (probably)
Find all bijective functions $f:\mathbb{R}\to \mathbb{R}$ such that $$(x-y)f(x+f(f(y)))=xf(x)+f(y)^{2}$$for all $x,y\in \mathbb{R}$ such that $x\neq y$.
8 replies
benjaminchew13
4 hours ago
benjaminchew13
2 hours ago
Sum of divisors
Kimchiks926   3
N 3 hours ago by math-olympiad-clown
Source: Baltic Way 2022, Problem 17
Let $n$ be a positive integer such that the sum of its positive divisors is at least $2022n$. Prove that $n$ has at least $2022$ distinct prime factors.
3 replies
Kimchiks926
Nov 12, 2022
math-olympiad-clown
3 hours ago
Find the number of interesting numbers
WakeUp   13
N 3 hours ago by mathematical-forest
Source: China TST 2011 - Quiz 1 - D1 - P3
A positive integer $n$ is known as an interesting number if $n$ satisfies
\[{\  \{\frac{n}{10^k}} \} > \frac{n}{10^{10}} \]
for all $k=1,2,\ldots 9$.
Find the number of interesting numbers.
13 replies
WakeUp
May 19, 2011
mathematical-forest
3 hours ago
A complex FE from Iran
mojyla222   7
N 3 hours ago by mathematical-forest
Source: Iran 2024 3rd round algebra exam P2
A surjective function $g: \mathbb{C} \to \mathbb C$ is given. Find all functions $f: \mathbb{C} \to \mathbb C$ such that for all $x,y\in \mathbb C$ we have
$$
|f(x)+g(y)| = | f(y) + g(x)|.
$$

Proposed by Mojtaba Zare, Amirabbas Mohammadi
7 replies
mojyla222
Aug 29, 2024
mathematical-forest
3 hours ago
interesting geometry config (3/3)
Royal_mhyasd   1
N 3 hours ago by Royal_mhyasd
Let $\triangle ABC$ be an acute triangle, $H$ its orthocenter and $E$ the center of its nine point circle. Let $P$ be a point on the parallel through $C$ to $AB$ such that $\angle CPH = |\angle BAC-\angle ABC|$ and $P$ and $A$ are on different sides of $BC$ and $Q$ a point on the parallel through $B$ to $AC$ such that $\angle BQH = |\angle BAC - \angle ACB|$ and $C$ and $Q$ are on different sides of $AB$. If $B'$ and $C'$ are the reflections of $H$ over $AC$ and $AB$ respectively, $S$ and $T$ are the intersections of $B'Q$ and $C'P$ respectively with the circumcircle of $\triangle ABC$, prove that the intersection of lines $CT$ and $BS$ lies on $HE$.

final problem for this "points on parallels forming strange angles with the orthocenter" config, for now. personally i think its pretty cool :D
1 reply
Royal_mhyasd
Today at 7:06 AM
Royal_mhyasd
3 hours ago
interesting geo config (2/3)
Royal_mhyasd   4
N 3 hours ago by Royal_mhyasd
Source: own
Let $\triangle ABC$ be an acute triangle and $H$ its orthocenter. Let $P$ be a point on the parallel through $A$ to $BC$ such that $\angle APH = |\angle ABC-\angle ACB|$. Define $Q$ and $R$ as points on the parallels through $B$ to $AC$ and through $C$ to $AB$ similarly. If $P,Q,R$ are positioned around the sides of $\triangle ABC$ as in the given configuration, prove that $P,Q,R$ are collinear.
4 replies
Royal_mhyasd
Yesterday at 11:36 PM
Royal_mhyasd
3 hours ago
a