Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
ISI UGB 2025 P1
SomeonecoolLovesMaths   4
N 2 hours ago by ZeroAlephZeta
Source: ISI UGB 2025 P1
Suppose $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and $| f'(x)| < \frac{1}{2}$ for all $x \in \mathbb{R}$. Show that for some $x_0 \in \mathbb{R}$, $f \left( x_0 \right) = x_0$.
4 replies
1 viewing
SomeonecoolLovesMaths
5 hours ago
ZeroAlephZeta
2 hours ago
UC Berkeley Integration Bee 2025 Bracket Rounds
Silver08   11
N 3 hours ago by quasar_lord
Regular Round

Quarterfinals

Semifinals

3rd Place Match

Finals
11 replies
1 viewing
Silver08
May 9, 2025
quasar_lord
3 hours ago
nice integral
Martin.s   1
N 4 hours ago by ysharifi
$$ \int_{0}^{\infty} \ln(2t) \ln(\tanh t) \, dt $$
1 reply
Martin.s
Today at 10:33 AM
ysharifi
4 hours ago
D1028 : A strange result about linear algebra
Dattier   2
N 6 hours ago by ysharifi
Source: les dattes à Dattier
Let $p>3$ a prime number, with $H \subset M_p(\mathbb R), \dim(H)\geq 2$ and $H-\{0\} \subset GL_p(\mathbb R)$, $H$ vector space.

Is it true that $H-\{0\}$ is a group?
2 replies
Dattier
Yesterday at 1:49 PM
ysharifi
6 hours ago
Mathematical expectation 1
Tricky123   0
Today at 9:51 AM
X is continuous random variable having spectrum
$(-\infty,\infty) $ and the distribution function is $F(x)$ then
$E(X)=\int_{0}^{\infty}(1-F(x)-F(-x))dx$ and find the expression of $V(x)$

Ans:- $V(x)=\int_{0}^{\infty}(2x(1-F(x)+F(-x))dx-m^{2}$

How to solve help me
0 replies
Tricky123
Today at 9:51 AM
0 replies
Double integrals
fermion13pi   1
N Today at 8:11 AM by Svyatoslav
Source: Apostol, vol 2
Evaluate the double integral by converting to polar coordinates:

\[
\int_0^1 \int_{x^2}^x (x^2 + y^2)^{-1/2} \, dy \, dx
\]
Change the order of integration and then convert to polar coordinates.

1 reply
fermion13pi
Yesterday at 1:58 PM
Svyatoslav
Today at 8:11 AM
Roots of a polynomial not in the disc of unity
Fatoushima   1
N Today at 7:59 AM by alexheinis
Show that the polynomial $p_n(z)=\sum_{k=1}^nkz^{n-k}$ has no roots in the disc of unity.
1 reply
Fatoushima
Today at 1:48 AM
alexheinis
Today at 7:59 AM
Integration Bee Kaizo
Calcul8er   61
N Today at 6:36 AM by Svyatoslav
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
61 replies
Calcul8er
Mar 2, 2025
Svyatoslav
Today at 6:36 AM
Past USAMO Medals
sdpandit   2
N Today at 6:27 AM by sdpandit
Does anyone know where to find lists of USAMO medalists from past years? I can find the 2025 list on their website, but they don't seem to keep lists from previous years and I can't find it anywhere else. Thanks!
2 replies
sdpandit
May 8, 2025
sdpandit
Today at 6:27 AM
Japanese Olympiad
parkjungmin   2
N Today at 5:26 AM by parkjungmin
It's about the Japanese Olympiad

I can't solve it no matter how much I think about it.

If there are people who are good at math

Please help me.
2 replies
parkjungmin
Yesterday at 6:51 PM
parkjungmin
Today at 5:26 AM
Japanese high school Olympiad.
parkjungmin   0
Today at 5:25 AM
It's about the Japanese high school Olympiad.

If there are any students who are good at math, try solving it.
0 replies
parkjungmin
Today at 5:25 AM
0 replies
a