Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
External Direct Sum
We2592   0
Today at 2:45 AM
Q) 1. Let $V$ be external direct sum of vector spaces $U$ and $W$ over a field $\mathbb{F}$.let $\hat{U}={\{(u,0):u\in U\}}$ and $\hat{W}={\{(0,w):w\in W\}}$
show that
i) $\hat{U}$ and $\hat{W}$ is subspaces.
ii)$V=\hat{U}\oplus\hat{W}$

Q)2. Suppose $V=U+W$. Let $\hat{V}$ be the external direct sum of $U$ and $W$. show that $V$ is isomorphic to $\hat{V}$ under the correspondence $v=u+w\leftrightarrow(u,w)$

I face some trouble to solve this problems help me for understanding.
thank you.

0 replies
We2592
Today at 2:45 AM
0 replies
Definite integration
girishpimoli   2
N Yesterday at 11:59 PM by Amkan2022
If $\displaystyle g(t)=\int^{t^{2}}_{2t}\cot^{-1}\bigg|\frac{1+x}{(1+t)^2-x}\bigg|dx.$ Then $\displaystyle \frac{g(5)}{g(3)}$ is
2 replies
girishpimoli
Apr 6, 2025
Amkan2022
Yesterday at 11:59 PM
Putnam 1968 A6
sqrtX   11
N Yesterday at 11:47 PM by ohiorizzler1434
Source: Putnam 1968
Find all polynomials whose coefficients are all $\pm1$ and whose roots are all real.
11 replies
sqrtX
Feb 19, 2022
ohiorizzler1434
Yesterday at 11:47 PM
Affine variety
YamoSky   1
N Yesterday at 9:01 PM by amplreneo
Let $A=\left\{z\in\mathbb{C}|Im(z)\geq0\right\}$. Is it possible to equip $A$ with a finitely generated k-algebra with one generator such that make $A$ be an affine variety?
1 reply
YamoSky
Jan 9, 2020
amplreneo
Yesterday at 9:01 PM
Reducing the exponents for good
RobertRogo   0
Yesterday at 6:38 PM
Source: The national Algebra contest (Romania), 2025, Problem 3/Abstract Algebra (a bit generalized)
Let $A$ be a ring with unity such that for every $x \in A$ there exist $t_x, n_x \in \mathbb{N}^*$ such that $x^{t_x+n_x}=x^{n_x}$. Prove that
a) If $t_x \cdot 1 \in U(A), \forall x \in A$ then $x^{t_x+1}=x, \forall x \in A$
b) If there is an $x \in A$ such that $t_x \cdot 1 \notin U(A)$ then the result from a) may no longer hold.

Authors: Laurențiu Panaitopol, Dorel Miheț, Mihai Opincariu, me, Filip Munteanu
0 replies
RobertRogo
Yesterday at 6:38 PM
0 replies
Differential equations , Matrix theory
c00lb0y   3
N Yesterday at 12:26 PM by loup blanc
Source: RUDN MATH OLYMP 2024 problem 4
Any idea?? Diff equational system combined with Matrix theory.
Consider the equation dX/dt=X^2, where X(t) is an n×n matrix satisfying the condition detX=0. It is known that there are no solutions of this equation defined on a bounded interval, but there exist non-continuable solutions defined on unbounded intervals of the form (t ,+∞) and (−∞,t). Find n.
3 replies
c00lb0y
Apr 17, 2025
loup blanc
Yesterday at 12:26 PM
The matrix in some degree is a scalar
FFA21   4
N Yesterday at 12:06 PM by FFA21
Source: MSU algebra olympiad 2025 P2
$A\in M_{3\times 3}$ invertible, for an infinite number of $k$:
$tr(A^k)=0$
Is it true that $\exists n$ such that $A^n$ is a scalar
4 replies
FFA21
Yesterday at 12:11 AM
FFA21
Yesterday at 12:06 PM
Weird integral
Martin.s   0
Yesterday at 9:33 AM
\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 
\frac{1 - e^{-2} \cos\left(2\left(u + \tan u\right)\right)}
{1 - 2e^{-2} \cos\left(2\left(u + \tan u\right)\right) + e^{-4}} 
\, \mathrm{d}u
\]
0 replies
Martin.s
Yesterday at 9:33 AM
0 replies
hard number theory problem
danilorj   4
N Yesterday at 9:01 AM by c00lb0y
Let \( a \) and \( b \) be positive integers. Prove that
\[
a^2 + \left\lceil \frac{4a^2}{b} \right\rceil
\]is not a perfect square.
4 replies
1 viewing
danilorj
May 18, 2025
c00lb0y
Yesterday at 9:01 AM
maximum dimention of non-singular subspace
FFA21   1
N Yesterday at 8:27 AM by alexheinis
Source: MSU algebra olympiad 2025 P1
We call a linear subspace in the space of square matrices non-singular if all matrices contained in it, except for the zero one, are non-singular. Find the maximum dimension of a non-singular subspace in the space of
a) complex $n\times n$ matrices
b) real $4\times 4$ matrices
c) rational $n\times n$ matrices
1 reply
FFA21
Yesterday at 12:02 AM
alexheinis
Yesterday at 8:27 AM
a