Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Permutations of Integers from 1 to n
Twoisntawholenumber   75
N 14 minutes ago by SYBARUPEMULA
Source: 2020 ISL C1
Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the
sequence $1$, $2$, $\dots$ , $n$ satisfying
$$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$.

Proposed by United Kingdom
75 replies
Twoisntawholenumber
Jul 20, 2021
SYBARUPEMULA
14 minutes ago
Again
heartwork   11
N 35 minutes ago by Mathandski
Source: Vietnam MO 2002, Problem 5
Determine for which $ n$ positive integer the equation: $ a + b + c + d = n \sqrt {abcd}$ has positive integer solutions.
11 replies
heartwork
Dec 16, 2004
Mathandski
35 minutes ago
Cono Sur Olympiad 2011, Problem 3
Leicich   5
N 37 minutes ago by Thelink_20
Let $ABC$ be an equilateral triangle. Let $P$ be a point inside of it such that the square root of the distance of $P$ to one of the sides is equal to the sum of the square roots of the distances of $P$ to the other two sides. Find the geometric place of $P$.
5 replies
Leicich
Aug 23, 2014
Thelink_20
37 minutes ago
IMO Genre Predictions
ohiorizzler1434   69
N 39 minutes ago by whwlqkd
Everybody, with IMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict
69 replies
ohiorizzler1434
May 3, 2025
whwlqkd
39 minutes ago
Central sequences
EeEeRUT   11
N 43 minutes ago by jonh_malkovich
Source: EGMO 2025 P2
An infinite increasing sequence $a_1 < a_2 < a_3 < \cdots$ of positive integers is called central if for every positive integer $n$ , the arithmetic mean of the first $a_n$ terms of the sequence is equal to $a_n$.

Show that there exists an infinite sequence $b_1, b_2, b_3, \dots$ of positive integers such that for every central sequence $a_1, a_2, a_3, \dots, $ there are infinitely many positive integers $n$ with $a_n = b_n$.
11 replies
EeEeRUT
Apr 16, 2025
jonh_malkovich
43 minutes ago
geometry problem
kjhgyuio   2
N an hour ago by ricarlos
........
2 replies
kjhgyuio
May 11, 2025
ricarlos
an hour ago
Sequence inequality
hxtung   20
N an hour ago by awesomeming327.
Source: IMO ShortList 2003, algebra problem 6
Let $n$ be a positive integer and let $(x_1,\ldots,x_n)$, $(y_1,\ldots,y_n)$ be two sequences of positive real numbers. Suppose $(z_2,\ldots,z_{2n})$ is a sequence of positive real numbers such that $z_{i+j}^2 \geq x_iy_j$ for all $1\le i,j \leq n$.

Let $M=\max\{z_2,\ldots,z_{2n}\}$. Prove that \[
	\left( \frac{M+z_2+\dots+z_{2n}}{2n} \right)^2
	\ge
	\left( \frac{x_1+\dots+x_n}{n} \right)
	\left( \frac{y_1+\dots+y_n}{n} \right). \]

comment

Proposed by Reid Barton, USA
20 replies
1 viewing
hxtung
Jun 9, 2004
awesomeming327.
an hour ago
I guess a very hard function?
Mr.C   20
N an hour ago by jasperE3
Source: A hand out
Find all functions from the reals to it self such that
$f(x)(f(y)+f(f(x)-y))=x^2$
20 replies
Mr.C
Mar 19, 2020
jasperE3
an hour ago
Concurrency from symmetric points on the sides of a triangle
MathMystic33   1
N 2 hours ago by MathLuis
Source: 2024 Macedonian Team Selection Test P3
Let $\triangle ABC$ be a triangle. On side $AB$ take points $K$ and $L$ such that $AK \;=\; LB \;<\;\tfrac12\,AB,$
on side $BC$ take points $M$ and $N$ such that $BM \;=\; NC \;<\;\tfrac12\,BC,$ and on side $CA$ take points $P$ and $Q$ such that $CP \;=\; QA \;<\;\tfrac12\,CA.$ Let $R \;=\; KN\;\cap\;MQ,
\quad
T \;=\; KN \cap LP, $ and $ D \;=\; NP \cap LM, \quad
E \;=\; NP \cap KQ.$
Prove that the lines $DR, BE, CT$ are concurrent.
1 reply
MathMystic33
May 13, 2025
MathLuis
2 hours ago
Nice original fe
Rayanelba   10
N 2 hours ago by GreekIdiot
Source: Original
Find all functions $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ that verify the following equation :
$P(x,y):f(x+yf(x))+f(f(x))=f(xy)+2x$
10 replies
Rayanelba
Thursday at 12:37 PM
GreekIdiot
2 hours ago
Collinearity of intersection points in a triangle
MathMystic33   3
N 3 hours ago by ariopro1387
Source: 2025 Macedonian Team Selection Test P1
On the sides of the triangle \(\triangle ABC\) lie the following points: \(K\) and \(L\) on \(AB\), \(M\) on \(BC\), and \(N\) on \(CA\). Let
\[
P = AM\cap BN,\quad
R = KM\cap LN,\quad
S = KN\cap LM,
\]and let the line \(CS\) meet \(AB\) at \(Q\). Prove that the points \(P\), \(Q\), and \(R\) are collinear.
3 replies
MathMystic33
May 13, 2025
ariopro1387
3 hours ago
My Unsolved Problem
MinhDucDangCHL2000   3
N 3 hours ago by GreekIdiot
Source: 2024 HSGS Olympiad
Let triangle $ABC$ be inscribed in the circle $(O)$. A line through point $O$ intersects $AC$ and $AB$ at points $E$ and $F$, respectively. Let $P$ be the reflection of $E$ across the midpoint of $AC$, and $Q$ be the reflection of $F$ across the midpoint of $AB$. Prove that:
a) the reflection of the orthocenter $H$ of triangle $ABC$ across line $PQ$ lies on the circle $(O)$.
b) the orthocenters of triangles $AEF$ and $HPQ$ coincide.

Im looking for a solution used complex bashing :(
3 replies
MinhDucDangCHL2000
Apr 29, 2025
GreekIdiot
3 hours ago
Classical triangle geometry
Valentin Vornicu   11
N 3 hours ago by HormigaCebolla
Source: Kazakhstan international contest 2006, Problem 2
Let $ ABC$ be a triangle and $ K$ and $ L$ be two points on $ (AB)$, $ (AC)$ such that $ BK = CL$ and let $ P = CK\cap BL$. Let the parallel through $ P$ to the interior angle bisector of $ \angle BAC$ intersect $ AC$ in $ M$. Prove that $ CM = AB$.
11 replies
Valentin Vornicu
Jan 22, 2006
HormigaCebolla
3 hours ago
Incircle in an isoscoles triangle
Sadigly   0
4 hours ago
Source: own
Let $ABC$ be an isosceles triangle with $AB=AC$, and let $I$ be its incenter. Incircle touches sides $BC,CA,AB$ at $D,E,F$, respectively. Foot of altitudes from $E,F$ to $BC$ are $X,Y$ , respectively. Rays $XI,YI$ intersect $(ABC)$ at $P,Q$, respectively. Prove that $(PQD)$ touches incircle at $D$.
0 replies
Sadigly
4 hours ago
0 replies
Determining Integers From Sums
oVlad   2
N Apr 14, 2025 by oVlad
Source: Romania Junior TST 2025 Day 1 P3
Let $n\geqslant 3$ be a positiv integer. Ana chooses the positive integers $a_1,a_2,\ldots,a_n$ and for any non-empty subset $A\subseteq\{1,2,\ldots,n\}$ she computes the sum \[s_A=\sum_{k
\in A}a_k.\]She orders these sums $s_1\leqslant s_2\leqslant\cdots\leqslant s_{2^n-1}.$ Prove that there exists a subset $B\subseteq\{1,2,\ldots,2^n-1\}$ with $2^{n-2}+1$ elements such that, regardless of the integers $a_1,a_2,\ldots,a_n$ chosen by Ana, these can be determined by only knowing the sums $s_i$ with $i\in B.$
2 replies
oVlad
Apr 12, 2025
oVlad
Apr 14, 2025
Determining Integers From Sums
G H J
G H BBookmark kLocked kLocked NReply
Source: Romania Junior TST 2025 Day 1 P3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oVlad
1746 posts
#1 • 1 Y
Y by anantmudgal09
Let $n\geqslant 3$ be a positiv integer. Ana chooses the positive integers $a_1,a_2,\ldots,a_n$ and for any non-empty subset $A\subseteq\{1,2,\ldots,n\}$ she computes the sum \[s_A=\sum_{k
\in A}a_k.\]She orders these sums $s_1\leqslant s_2\leqslant\cdots\leqslant s_{2^n-1}.$ Prove that there exists a subset $B\subseteq\{1,2,\ldots,2^n-1\}$ with $2^{n-2}+1$ elements such that, regardless of the integers $a_1,a_2,\ldots,a_n$ chosen by Ana, these can be determined by only knowing the sums $s_i$ with $i\in B.$
This post has been edited 1 time. Last edited by oVlad, Apr 12, 2025, 9:45 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
removablesingularity
569 posts
#2
Y by
I don't know if I misunderstood the problem, but if $A = \{i\},i=1,2,\cdots,n$ and $B$ contains $A$ does it solve the problem?Since it contains the single element?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oVlad
1746 posts
#3
Y by
removablesingularity wrote:
I don't know if I misunderstood the problem, but if $A = \{i\},i=1,2,\cdots,n$ and $B$ contains $A$ does it solve the problem?Since it contains the single element?
The problem is that $s_i{}$ denotes the $i$-th smallest sum, not necessarily the sum of the singleton $\{a_i\}$. For instance, if $a_1{}$ and $a_2{}$ are rather small, but all other $a_i$'s are much much larger, then $s_3=a_1+a_2$ not $a_3{}$ so it's useless information.
Z K Y
N Quick Reply
G
H
=
a