Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
Yesterday at 11:16 PM
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Yesterday at 11:16 PM
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Hojoo Lee problem 73
Leon   23
N 7 minutes ago by sqing
Source: Belarus 1998
Let $a$, $b$, $c$ be real positive numbers. Show that \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1\]
23 replies
Leon
Aug 21, 2006
sqing
7 minutes ago
Avoid losing the game
PieAreSquared   17
N 9 minutes ago by Mathgloggers
Source: EGMO 2023/4
Turbo the snail sits on a point on a circle with circumference $1$. Given an infinite sequence of positive real numbers $c_1, c_2, c_3, \dots$, Turbo successively crawls distances $c_1, c_2, c_3, \dots$ around the circle, each time choosing to crawl either clockwise or counterclockwise.
Determine the largest constant $C > 0$ with the following property: for every sequence of positive real numbers $c_1, c_2, c_3, \dots$ with $c_i < C$ for all $i$, Turbo can (after studying the sequence) ensure that there is some point on the circle that it will never visit or crawl across.
17 replies
PieAreSquared
Apr 16, 2023
Mathgloggers
9 minutes ago
Special line through antipodal
Phorphyrion   10
N 12 minutes ago by SimogmH1
Source: 2025 Israel TST Test 1 P2
Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.
10 replies
1 viewing
Phorphyrion
Oct 28, 2024
SimogmH1
12 minutes ago
Hard trigonometric inequality 2+Σ[cyc](B+C-A)/sinA>(pi/2)Σ[cyc]sinA/sinBsinC
tom-nowy   2
N 17 minutes ago by tom-nowy
Source: https://web.archive.org/web/20220629144937/https://oshiete.goo.ne.jp/qa/13012170.html
For $\bigtriangleup ABC$, prove that
\[ 
2+ \frac{B+C-A}{\sin A} +\frac{C+A-B}{\sin B} +\frac{A+B-C}{\sin C}
 > \frac{\pi}{2}\left( \frac{\sin^2 A+\sin^2 B+\sin^2 C}{\sin A \sin B \sin C } \right) 
\]
2 replies
tom-nowy
Jun 14, 2022
tom-nowy
17 minutes ago
4 variables with quadrilateral sides
mihaig   6
N 19 minutes ago by mihaig
Source: VL
Let $a,b,c,d\geq0$ satisfying
$$\frac1{a+1}+\frac1{b+1}+\frac1{c+1}+\frac1{d+1}=2.$$Prove
$$4\left(abc+abd+acd+bcd\right)\geq3\left(a+b+c+d\right)+4.$$
6 replies
mihaig
Apr 25, 2025
mihaig
19 minutes ago
Bigger Cyclic Sets Exist?
FireBreathers   1
N 19 minutes ago by NO_SQUARES
Define the set of numbers $a_1, . . . , a_m$ is $bigger$ than the set of numbers $b_1, . . . , b_n$ if among all inequalities of the form $a_i > b_j$ the number of true inequalities is at least $2$ times greater than the number of false ones. Prove that there do not exist three sets $X, Y, Z$ such that $X$ is $bigger$ than $Y$, $Y$ is $bigger$ than $Z$, $Z$ is $bigger$ than $X$.
1 reply
FireBreathers
an hour ago
NO_SQUARES
19 minutes ago
Almost Squarefree Integers
oVlad   2
N 21 minutes ago by HeshTarg
Source: Romania Junior TST 2025 Day 1 P1
A positive integer $n\geqslant 3$ is almost squarefree if there exists a prime number $p\equiv 1\bmod 3$ such that $p^2\mid n$ and $n/p$ is squarefree. Prove that for any almost squarefree positive integer $n$ the ratio $2\sigma(n)/d(n)$ is an integer.
2 replies
oVlad
Apr 12, 2025
HeshTarg
21 minutes ago
D1024 : Can you do that?
Dattier   3
N 21 minutes ago by Dattier
Source: les dattes à Dattier
Let $x_{n+1}=x_n^2+1$ and $x_0=1$.

Can you calculate $\sum\limits_{i=1}^{2^{2025}} x_i \mod 10^{30}$?
3 replies
Dattier
Apr 29, 2025
Dattier
21 minutes ago
< KCE = < LCP , 4 circles related, hard version
parmenides51   4
N 34 minutes ago by Sivege
Source: 2019 RMM Shortlist G4, version 2 , generalized
Let $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. A point $D$ is chosen on the internal bisector of $\angle ACB$ so that the points $D$ and $C$ are separated by $AB$. A circle $\omega$ centered at $D$ is tangent to the segment $AB$ at $E$. The tangents to $\omega$ through $C$ meet the segment $AB$ at $K$ and $L$, where $K$ lies on the segment $AL$. A circle $\Omega_1$ is tangent to the segments $AL, CL$, and also to $\Omega$ at point $M$. Similarly, a circle $\Omega_2$ is tangent to the segments $BK, CK$, and also to $\Omega$ at point $N$. The lines $LM$ and $KN$ meet at $P$. Prove that $\angle KCE = \angle LCP$.

Poland
4 replies
parmenides51
Jun 18, 2020
Sivege
34 minutes ago
Hard inequality
ys33   1
N 35 minutes ago by sqing
Let $a, b, c, d>0$. Prove that
$\sqrt[3]{ab}+ \sqrt[3]{cd} < \sqrt[3]{(a+b+c)(b+c+d)}$.
1 reply
1 viewing
ys33
2 hours ago
sqing
35 minutes ago
Find (a,n)
shobber   71
N 36 minutes ago by MATHS_ENTUSIAST
Source: China TST 2006 (1)
Find all positive integer pairs $(a,n)$ such that $\frac{(a+1)^n-a^n}{n}$ is an integer.
71 replies
shobber
Mar 24, 2006
MATHS_ENTUSIAST
36 minutes ago
too many equality cases
Scilyse   18
N 39 minutes ago by mathfun07
Source: 2023 ISL C6
Let $N$ be a positive integer, and consider an $N \times N$ grid. A right-down path is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths.
IMAGE
Proposed by Zixiang Zhou, Canada
18 replies
Scilyse
Jul 17, 2024
mathfun07
39 minutes ago
Surjective number theoretic functional equation
snap7822   2
N an hour ago by shanelin-sigma
Source: 2025 Taiwan TST Round 3 Independent Study 2-N
Let $f:\mathbb{N} \rightarrow \mathbb{N}$ be a function satisfying the following conditions:
[list=i]
[*] For all $m, n \in \mathbb{N}$, if $m > n$ and $f(m) > f(n)$, then $f(m-n) = f(n)$;
[*] $f$ is surjective.
[/list]
Find the maximum possible value of $f(2025)$.

Proposed by snap7822
2 replies
snap7822
Yesterday at 12:18 PM
shanelin-sigma
an hour ago
Inequality with 3 variables and a special condition
Nuran2010   8
N an hour ago by sqing
Source: Azerbaijan Al-Khwarizmi IJMO TST 2024
For positive real numbers $a,b,c$ we have $3abc \geq ab+bc+ca$.
Prove that:

$\frac{1}{a^3+b^3+c}+\frac{1}{b^3+c^3+a}+\frac{1}{c^3+a^3+b} \leq \frac{3}{a+b+c}$.

Determine the equality case.
8 replies
Nuran2010
Apr 29, 2025
sqing
an hour ago
Another factorisation problem
kjhgyuio   3
N Apr 21, 2025 by Solar Plexsus
........
3 replies
kjhgyuio
Apr 17, 2025
Solar Plexsus
Apr 21, 2025
Another factorisation problem
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kjhgyuio
54 posts
#1
Y by
........
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
martianrunner
191 posts
#2
Y by
uhhh..

$(n+16)(n+3)=k^2$

just test some values, trying to get both factors in the form of a perfect square

we see that $n=33$ works

yeah
This post has been edited 2 times. Last edited by martianrunner, Apr 17, 2025, 11:54 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kjhgyuio
54 posts
#3
Y by
answer Click to reveal hidden text
This post has been edited 2 times. Last edited by kjhgyuio, Apr 18, 2025, 12:03 AM
Reason: nil
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Solar Plexsus
1388 posts
#4
Y by
We have given the Diophantine equation

$n^2 + 19n + 48 = m^2$,

which is equivalent to

$(2n + 19)^2 - 13^2 = (2m)^2$,

yielding

$(2n - 2m + 19)(2n + 2m + 19) = 13^2$,

implying (since 13 is a prime)

$(2n - 2m + 19, 2n + 2m + 19) = (1,13^2)$,

which give us

$4m = (2n + 2m + 19) - (2n - 2m + 19) = 13^2 - 1 = 169 - 1 = 168$,

$2(2n + 19) = (2n + 2m + 19) + (2n - 2m + 19) = 13^2 + 1 = 169 + 1 = 170$,

i.e. $(m,n) = (42,33)$.
Z K Y
N Quick Reply
G
H
=
a