Stay ahead of learning milestones! Enroll in a class over the summer!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Aime ll 2022 problem 5
Rook567   3
N 14 minutes ago by williamxiao
I don’t understand the solution. I got 220 as answer. Why does it insist, for example two primes must add to the third, when you can take 2,19,19 or 2,7,11 which for drawing purposes is equivalent to 1,1,2 and 2,7,9?
3 replies
+1 w
Rook567
Yesterday at 9:08 PM
williamxiao
14 minutes ago
usamOOK geometry
KevinYang2.71   103
N 2 hours ago by BS2012
Source: USAMO 2025/4, USAJMO 2025/5
Let $H$ be the orthocenter of acute triangle $ABC$, let $F$ be the foot of the altitude from $C$ to $AB$, and let $P$ be the reflection of $H$ across $BC$. Suppose that the circumcircle of triangle $AFP$ intersects line $BC$ at two distinct points $X$ and $Y$. Prove that $C$ is the midpoint of $XY$.
103 replies
KevinYang2.71
Mar 21, 2025
BS2012
2 hours ago
Interesting functional equation with geometry
User21837561   3
N 2 hours ago by Double07
Source: BMOSL 2024 G7
For an acute triangle $ABC$, let $O$ be the circumcentre, $H$ be the orthocentre, and $G$ be the centroid.
Let $f:\pi\rightarrow\mathbb R$ satisfy the following condition:
$f(A)+f(B)+f(C)=f(O)+f(G)+f(H)$
Prove that $f$ is constant.
3 replies
User21837561
Today at 8:14 AM
Double07
2 hours ago
greatest volume
hzbrl   1
N 2 hours ago by hzbrl
Source: purple comet
A large sphere with radius 7 contains three smaller balls each with radius 3 . The three balls are each externally tangent to the other two balls and internally tangent to the large sphere. There are four right circular cones that can be inscribed in the large sphere in such a way that the bases of the cones are tangent to all three balls. Of these four cones, the one with the greatest volume has volume $n \pi$. Find $n$.
1 reply
hzbrl
Yesterday at 9:56 AM
hzbrl
2 hours ago
(n+1)2^n, (n+3)2^{n+2} not perfect squares for the same n
parmenides51   3
N 2 hours ago by AylyGayypow009
Source: Greece JBMO TST 2015 p3
Prove that there is not a positive integer $n$ such that numbers $(n+1)2^n, (n+3)2^{n+2}$ are both perfect squares.
3 replies
parmenides51
Apr 29, 2019
AylyGayypow009
2 hours ago
IMO 2010 Problem 3
canada   59
N 3 hours ago by pi271828
Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$

Proposed by Gabriel Carroll, USA
59 replies
canada
Jul 7, 2010
pi271828
3 hours ago
Equilateral triangle formed by circle and Fermat point
Mimii08   2
N 3 hours ago by Mimii08
Source: Heard from a friend
Hi! I found this interesting geometry problem and I would really appreciate help with the proof.

Let ABC be an acute triangle, and let T be the Fermat (Torricelli) point of triangle ABC. Let A1, B1, and C1 be the feet of the perpendiculars from T to the sides BC, AC, and AB, respectively. Let ω be the circle passing through points A1, B1, and C1. Let A2, B2, and C2 be the second points where ω intersects the sides BC, AC, and AB, respectively (different from A1, B1, C1).

Prove that triangle A2B2C2 is equilateral.

2 replies
Mimii08
Yesterday at 10:36 PM
Mimii08
3 hours ago
two circumcenters and one orthocenter, vertices of parallelogram
parmenides51   4
N 3 hours ago by AylyGayypow009
Source: Greece JBMO TST 2015 p2
Let $ABC$ be an acute triangle inscribed in a circle of center $O$. If the altitudes $BD,CE$ intersect at $H$ and the circumcenter of $\triangle BHC$ is $O_1$, prove that $AHO_1O$ is a parallelogram.
4 replies
parmenides51
Apr 29, 2019
AylyGayypow009
3 hours ago
m^4+3^m is a perfect square number
Havu   5
N 3 hours ago by MR.1
Find a positive integer m such that $m^4+3^m$ is a perfect square number.
5 replies
Havu
4 hours ago
MR.1
3 hours ago
Determine all the 'good' numbers
April   4
N 3 hours ago by DottedCaculator
Source: CGMO 2004 P1
We say a positive integer $ n$ is good if there exists a permutation $ a_1, a_2, \ldots, a_n$ of $ 1, 2, \ldots, n$ such that $ k + a_k$ is perfect square for all $ 1\le k\le n$. Determine all the good numbers in the set $ \{11, 13, 15, 17, 19\}$.
4 replies
April
Dec 27, 2008
DottedCaculator
3 hours ago
Classical factorial number theory
Orestis_Lignos   21
N 3 hours ago by MIC38
Source: JBMO 2023 Problem 1
Find all pairs $(a,b)$ of positive integers such that $a!+b$ and $b!+a$ are both powers of $5$.

Nikola Velov, North Macedonia
21 replies
Orestis_Lignos
Jun 26, 2023
MIC38
3 hours ago
Functional equation
Nima Ahmadi Pour   100
N 4 hours ago by jasperE3
Source: ISl 2005, A2, Iran prepration exam
We denote by $\mathbb{R}^+$ the set of all positive real numbers.

Find all functions $f: \mathbb R^ + \rightarrow\mathbb R^ +$ which have the property:
\[f(x)f(y)=2f(x+yf(x))\]
for all positive real numbers $x$ and $y$.

Proposed by Nikolai Nikolov, Bulgaria
100 replies
Nima Ahmadi Pour
Apr 24, 2006
jasperE3
4 hours ago
USAJMO problem 2: Side lengths of an acute triangle
BOGTRO   59
N 4 hours ago by ostriches88
Source: Also USAMO problem 1
Find all integers $n \geq 3$ such that among any $n$ positive real numbers $a_1, a_2, \hdots, a_n$ with $\text{max}(a_1,a_2,\hdots,a_n) \leq n \cdot \text{min}(a_1,a_2,\hdots,a_n)$, there exist three that are the side lengths of an acute triangle.
59 replies
BOGTRO
Apr 24, 2012
ostriches88
4 hours ago
high tech FE as J1?!
imagien_bad   60
N 6 hours ago by SimplisticFormulas
Source: USAJMO 2025/1
Let $\mathbb Z$ be the set of integers, and let $f\colon \mathbb Z \to \mathbb Z$ be a function. Prove that there are infinitely many integers $c$ such that the function $g\colon \mathbb Z \to \mathbb Z$ defined by $g(x) = f(x) + cx$ is not bijective.
Note: A function $g\colon \mathbb Z \to \mathbb Z$ is bijective if for every integer $b$, there exists exactly one integer $a$ such that $g(a) = b$.
60 replies
imagien_bad
Mar 20, 2025
SimplisticFormulas
6 hours ago
9 USA(J)MO Grading Poll
elasticwealth   12
N Apr 23, 2025 by KevinChen_Yay
Please vote honestly. If you did not compete in the USA(J)MO, please do not vote.
12 replies
elasticwealth
Apr 23, 2025
KevinChen_Yay
Apr 23, 2025
USA(J)MO Grading Poll
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
elasticwealth
342 posts
#1
Y by
9Poll:
Overall, do you think the scores you received on the USA(J)MO were fair?
115 Votes
50%
(58)
50%
(57)
Hide Results Show Results
You must be signed in to vote.
Please vote honestly. If you did not compete in the USA(J)MO, please do not vote.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
vincentwant
1385 posts
#2
Y by
Idk it depends on what I submitted for p6
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MrMustache
3015 posts
#3 • 1 Y
Y by elasticwealth
The grading process involves a rigorous review by multiple graders to ensure that the solutions are evaluated accurately and consistently. This review process ensures that the final scores are fair and accurate.

SO if you put No you lying because its not like they have beef with your solutions
This post has been edited 1 time. Last edited by MrMustache, Apr 23, 2025, 3:31 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mulberrykid
141 posts
#4
Y by
MrMustache wrote:
The grading process involves a rigorous review by multiple graders to ensure that the solutions are evaluated accurately and consistently. This review process ensures that the final scores are fair and accurate.

SO if you put No you lying because its not like they have beef with your solutions

how many graders check one solution? two people? three people?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
grape1984
10 posts
#5
Y by
can my grade be called fair if i still haven't gotten it yet (yeah idk what MAA is doing but they still haven't given back my usajmo score)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
wuwang2002
1214 posts
#6
Y by
MrMustache wrote:
The grading process involves a rigorous review by multiple graders to ensure that the solutions are evaluated accurately and consistently. This review process ensures that the final scores are fair and accurate.

SO if you put No you lying because its not like they have beef with your solutions

problem is when none of the four people who wrote the exact same solutions as aops did all get 0’s on that problem, MAA clearly screwed something up like losing test papers
grape1984 wrote:
can my grade be called fair if i still haven't gotten it yet (yeah idk what MAA is doing but they still haven't given back my usajmo score)

you are an admitter
same usajmo doesn’t even show up on my test portal thing
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
greenturtle3141
3559 posts
#7
Y by
mulberrykid wrote:
MrMustache wrote:
The grading process involves a rigorous review by multiple graders to ensure that the solutions are evaluated accurately and consistently. This review process ensures that the final scores are fair and accurate.

SO if you put No you lying because its not like they have beef with your solutions

how many graders check one solution? two people? three people?

At least 2 and sometimes more.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rjiangbz
510 posts
#8 • 1 Y
Y by bjump
MrMustache wrote:
The grading process involves a rigorous review by multiple graders to ensure that the solutions are evaluated accurately and consistently. This review process ensures that the final scores are fair and accurate.

SO if you put No you lying because its not like they have beef with your solutions

surely the intended complaint is "the rubrics are bad" right
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
BS2012
1034 posts
#9 • 1 Y
Y by elasticwealth
entirely fair; the reason i didnt make mop is because of skillissue
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ethan2011
318 posts
#10
Y by
BS2012 wrote:
entirely fair; the reason i didnt make mop is because of skillissue

same
time to grind oly for a year straight
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Martin2001
152 posts
#11
Y by
grape1984 wrote:
can my grade be called fair if i still haven't gotten it yet (yeah idk what MAA is doing but they still haven't given back my usajmo score)

did you ask your proctor
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
hashbrown2009
190 posts
#12
Y by
Yeah, I'm sure the solutions are fair and accurate. I just didn't make MOP because I suck and don't know how to write proofs.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KevinChen_Yay
238 posts
#13
Y by
my p2 was :skull:
Z K Y
N Quick Reply
G
H
=
a