Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Sum and product of digits
Sadigly   1
N 11 minutes ago by Bergo1305
Source: Azerbaijan NMO 2018
For a positive integer $n$, define $f(n)=n+P(n)$ and $g(n)=n\cdot S(n)$, where $P(n)$ and $S(n)$ denote the product and sum of the digits of $n$, respectively. Find all solutions to $f(n)=g(n)$
1 reply
Sadigly
Yesterday at 9:19 PM
Bergo1305
11 minutes ago
USAMO 2002 Problem 2
MithsApprentice   34
N 17 minutes ago by Giant_PT
Let $ABC$ be a triangle such that
\[ \left( \cot \dfrac{A}{2} \right)^2 + \left( 2\cot \dfrac{B}{2} \right)^2 + \left( 3\cot \dfrac{C}{2} \right)^2 = \left( \dfrac{6s}{7r} \right)^2,  \]
where $s$ and $r$ denote its semiperimeter and its inradius, respectively. Prove that triangle $ABC$ is similar to a triangle $T$ whose side lengths are all positive integers with no common divisors and determine these integers.
34 replies
MithsApprentice
Sep 30, 2005
Giant_PT
17 minutes ago
Another config geo with concurrent lines
a_507_bc   17
N 42 minutes ago by Rayvhs
Source: BMO SL 2023 G5
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
17 replies
a_507_bc
May 3, 2024
Rayvhs
42 minutes ago
Nice sequence problem.
mathlover1231   1
N an hour ago by vgtcross
Source: Own
Scientists found a new species of bird called “N-coloured rainbow”. They also found out 3 interesting facts about the bird’s life: 1) every day, N-coloured rainbow is coloured in one of N colors.
2) every day, the color is different from yesterday (not every previous day, just yesterday).
3) there are no four days i, j, k, l in the bird’s life such that i<j<k<l with colours a, b, c, d respectively for which a=c ≠ b=d.
Find the greatest possible age (in days) of this bird as a function of N.
1 reply
mathlover1231
Apr 10, 2025
vgtcross
an hour ago
Three circles are concurrent
Twoisaprime   23
N an hour ago by Curious_Droid
Source: RMM 2025 P5
Let triangle $ABC$ be an acute triangle with $AB<AC$ and let $H$ and $O$ be its orthocenter and circumcenter, respectively. Let $\Gamma$ be the circle $BOC$. The line $AO$ and the circle of radius $AO$ centered at $A$ cross $\Gamma$ at $A’$ and $F$, respectively. Prove that $\Gamma$ , the circle on diameter $AA’$ and circle $AFH$ are concurrent.
Proposed by Romania, Radu-Andrew Lecoiu
23 replies
1 viewing
Twoisaprime
Feb 13, 2025
Curious_Droid
an hour ago
|a_i/a_j - a_k/a_l| <= C
mathwizard888   32
N an hour ago by ezpotd
Source: 2016 IMO Shortlist A2
Find the smallest constant $C > 0$ for which the following statement holds: among any five positive real numbers $a_1,a_2,a_3,a_4,a_5$ (not necessarily distinct), one can always choose distinct subscripts $i,j,k,l$ such that
\[ \left| \frac{a_i}{a_j} - \frac {a_k}{a_l} \right| \le C. \]
32 replies
mathwizard888
Jul 19, 2017
ezpotd
an hour ago
Two lines meeting on circumcircle
Zhero   54
N 2 hours ago by Ilikeminecraft
Source: ELMO Shortlist 2010, G4; also ELMO #6
Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$.

Amol Aggarwal.
54 replies
Zhero
Jul 5, 2012
Ilikeminecraft
2 hours ago
Help me this problem. Thank you
illybest   3
N 2 hours ago by jasperE3
Find f: R->R such that
f( xy + f(z) ) = (( xf(y) + yf(x) )/2) + z
3 replies
illybest
Today at 11:05 AM
jasperE3
2 hours ago
line JK of intersection points of 2 lines passes through the midpoint of BC
parmenides51   4
N 2 hours ago by reni_wee
Source: Rioplatense Olympiad 2018 level 3 p4
Let $ABC$ be an acute triangle with $AC> AB$. be $\Gamma$ the circumcircle circumscribed to the triangle $ABC$ and $D$ the midpoint of the smallest arc $BC$ of this circle. Let $E$ and $F$ points of the segments $AB$ and $AC$ respectively such that $AE = AF$. Let $P \neq A$ be the second intersection point of the circumcircle circumscribed to $AEF$ with $\Gamma$. Let $G$ and $H$ be the intersections of lines $PE$ and $PF$ with $\Gamma$ other than $P$, respectively. Let $J$ and $K$ be the intersection points of lines $DG$ and $DH$ with lines $AB$ and $AC$ respectively. Show that the $JK$ line passes through the midpoint of $BC$
4 replies
parmenides51
Dec 11, 2018
reni_wee
2 hours ago
AGM Problem(Turkey JBMO TST 2025)
HeshTarg   3
N 2 hours ago by ehuseyinyigit
Source: Turkey JBMO TST Problem 6
Given that $x, y, z > 1$ are real numbers, find the smallest possible value of the expression:
$\frac{x^3 + 1}{(y-1)(z+1)} + \frac{y^3 + 1}{(z-1)(x+1)} + \frac{z^3 + 1}{(x-1)(y+1)}$
3 replies
HeshTarg
3 hours ago
ehuseyinyigit
2 hours ago
Shortest number theory you might've seen in your life
AlperenINAN   8
N 3 hours ago by HeshTarg
Source: Turkey JBMO TST 2025 P4
Let $p$ and $q$ be prime numbers. Prove that if $pq(p+1)(q+1)+1$ is a perfect square, then $pq + 1$ is also a perfect square.
8 replies
AlperenINAN
Yesterday at 7:51 PM
HeshTarg
3 hours ago
Squeezing Between Perfect Squares and Modular Arithmetic(JBMO TST Turkey 2025)
HeshTarg   3
N 3 hours ago by BrilliantScorpion85
Source: Turkey JBMO TST Problem 4
If $p$ and $q$ are primes and $pq(p+1)(q+1)+1$ is a perfect square, prove that $pq+1$ is a perfect square.
3 replies
HeshTarg
4 hours ago
BrilliantScorpion85
3 hours ago
A bit too easy for P2(Turkey 2025 JBMO TST)
HeshTarg   0
3 hours ago
Source: Turkey 2025 JBMO TST P2
Let $n$ be a positive integer. Aslı and Zehra are playing a game on an $n \times n$ chessboard. Initially, $10n^2$ stones are placed on the squares of the board. In each move, Aslı chooses a row or a column; Zehra chooses a row or a column. The number of stones in each square of the chosen row or column must change such that the difference between the number of stones in a square with the most stones and a square with the fewest stones in that same row or column is at most 1. For which values of $n$ can Aslı guarantee that after a finite number of moves, all squares on the board will have an equal number of stones, regardless of the initial distribution?
0 replies
HeshTarg
3 hours ago
0 replies
D1030 : An inequalitie
Dattier   0
3 hours ago
Source: les dattes à Dattier
Let $0<a<b<c<d$ reals, and $n \in \mathbb N^*$.

Is it true that $a^n(b-a)+b^n(c-b)+c^n(d-c) \leq \dfrac {d^{n+1}}{n+1}$ ?
0 replies
Dattier
3 hours ago
0 replies
USAMO 2002 Problem 4
MithsApprentice   90
N Apr 25, 2025 by Ilikeminecraft
Let $\mathbb{R}$ be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[ f(x^2 - y^2) = x f(x) - y f(y)  \] for all pairs of real numbers $x$ and $y$.
90 replies
MithsApprentice
Sep 30, 2005
Ilikeminecraft
Apr 25, 2025
USAMO 2002 Problem 4
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KevinYang2.71
427 posts
#80 • 1 Y
Y by Orthogonal.
Solved with Orthogonal..

We claim the only functions are $\boxed{f(x)\equiv cx}$ for $c\in\mathbb{R}$. It is easy to check that these work.

Let $P(x,y)$ denote the given assertion. $P(0,0)$ gives $f(0)=0$ and $P(x,0)$ gives $f(x^2)=xf(x)$. From $P(x,x)$ we get $f(x)=-f(-x)$. Thus $P(x,y)$ becomes $f(x^2-y^2)=f(x^2)+f(-y^2)$. It follows that
\[
f(x+y)=f(x)+f(y)\ \ \ \ \ \ \ \forall(x,y)\in\mathbb{R}^+\times\mathbb{R}^-.\tag{*}
\]
Claim. We have $f(x+y)=f(x)+f(y)$ for all $x,y\in\mathbb{R}$.

Proof. If $x$ and $y$ are both positive, $f(x+y)-f(x)=f(x+y)+f(-x)=f(y)$ so we are done. If exactly one of $x$ and $y$ are positive, we are done by $(*)$. If $x$ and $y$ are both negative,
\[
f(x+y)=-f(-x-y)=-f(-x)-f(-y)=f(x)+f(y)
\]by case $1$ so we are done. $\square$

Now
\begin{align*}
xf(x)+xf(1)+f(x)+f(1)&=(x+1)f(x+1)\\
&=f((x+1)^2)\\
&=f(x^2+2x+1)\\
&=xf(x)+2f(x)+f(1)
\end{align*}so $f(x)=f(1)x$, as desired. $\square$
This post has been edited 1 time. Last edited by KevinYang2.71, May 1, 2024, 6:01 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jndd
1416 posts
#81
Y by
We claim that the solutions are $f(x)=cx$ for any constant $c$, and it's easy to see that this satisfies the equation.

Plugging in $y=0$, we get $f(x^2)=xf(x)$, and plugging in $x=0$, we get $f(-y^2)=-yf(y)$. From this, we get $f(-x^2)=-xf(x)=-f(x^2)$, giving $-f(x)=f(-x)$.

Now, using the first two equations we got by plugging in $x=0$ and then $y=0$, we get $f(x^2-y^2)=f(x^2)-f(y^2)$, which further becomes $f(x^2-y^2)=f(x^2)+f(-y^2)$ since $-f(x)=f(-x)$. This implies that if $x\geq 0, y\leq 0$ or $x\leq 0, y\geq 0$, we have $f(x)+f(y)=f(x+y)$.

However, we can also get $f(x^2-y^2)+f(y^2)=f(x^2)$, and setting $x>y$ gives us that $f(x)+f(y)=f(x+y)$ also holds true when both $x,y\geq 0$. Finally, by negating everything and using $-f(x)=f(-x)$, this also holds true when both $x,y\leq 0$. Hence, $f$ satisfies Cauchy.

Then, we plug in $x+1$ into $f(x^2)=xf(x)$ and use the fact that $f$ satisfies Cauchy to get \[f((x+1)^2)=f(x^2)+f(x)+f(x+1)=(x+1)f(x+1)=xf(x)+xf(1)+f(x)+f(1),\]and by using $f(x^2)=xf(x)$, we can cancel things to get $f(x+1)=f(1)(x+1)$, giving $f(x)=cx$ where $c=f(1)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Markas
150 posts
#82
Y by
We will show that the answer is $f(x) = cx$. These work since $(x^2 - y^2).c = x.cx - y.cy$. Now we need to show these are the only solutions. Let x = 0, we get $f(-y^2) = -yf(y)$. Let y = 0, we get $f(x^2) = xf(x)$. By these two we get that f is odd and also that $f(0) = 0$. So now using what we got we can write the starting equation as $f(x^2 - y^2) + f(y^2) = f(x^2)$. Using this and the fact that f is odd we get that f is additive. Now plugging in x = x + 1 in $f(x^2) = xf(x)$ and using that f is additive we get $f((x+1)^2 ) = (x+1)f(x+1)$ $\Rightarrow$ $f(x^2 + 2x + 1) = f(x^2) + 2f(x) + f(1) = (x+1)f(x) + (x+1)f(1)$ which after clearing things up gives us that $f(x) = f(1)x = cx$ $\Rightarrow$ there are no other solutions and we are ready.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
fearsum_fyz
52 posts
#83 • 2 Y
Y by alexanderhamilton124, poirasss
We claim that the only solution is $\boxed{f(x) = cx}$ for some constant $c$. It is easy to verify that this satisfies the given condition. Now we will prove that it is the only solution.

$\underline{P}(x, x) \implies \boxed{f(0) = 0}$
$\underline{P}(x, y) - \underline{P}(y, x) \implies f(y^2 - x^2) = - f(x^2 - y^2) \implies \boxed{f \text{ is odd}}$.

$\underline{P}(x, 0) \implies \boxed{f(x^2) = x f(x)}$
$\implies f(x^2 - y^2) = f(x^2) - f(y^2)$
$\implies \boxed{f(x - y) = f(x) - f(y) \text{ for positive } x, y} \ldots \textcircled{1}$.

Now choose some positive $x$.
$\underline{P}(x - 1, x) \implies f(1 - 2x) = (x - 1)f(x - 1) - xf(x)$
$\overset{\textcircled{1}}{\implies} f(1) - f(2x) = (x - 1)(f(x) - f(1)) - xf(x)$
$\implies f(2x) - f(x) = xf(1)$
$\overset{\textcircled{1}}{\implies} f(x) = xf(1)$

So $f(x) = cx$ for positive $x$. Since $f$ is odd, this is also true for negative $x$.
We are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexanderhamilton124
397 posts
#85
Y by
From $f(x^2) = xf(x)$, and $f$ is odd, we can directly use Cauchy to finish :wink:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Siddharthmaybe
115 posts
#86
Y by
alexanderhamilton124 wrote:
From $f(x^2) = xf(x)$, and $f$ is odd, we can directly use Cauchy to finish :wink:

wait what?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
alexanderhamilton124
397 posts
#87 • 1 Y
Y by S_14159
I don't know if it's well known (somebody told me it was in BJV (?)), but look at the last property here
This post has been edited 1 time. Last edited by alexanderhamilton124, Dec 23, 2024, 7:22 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItsBesi
146 posts
#89 • 2 Y
Y by alexanderhamilton124, S_14159
alexanderhamilton124 wrote:
I don't know if it's well known (somebody told me it was in BJV (?)), but look at the last property here

Here is another problem you can use this trick. The problem is from 2022 Kosovo TST P1

https://artofproblemsolving.com/community/c6h2797116p24625420
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathwiz_1207
100 posts
#90
Y by
We claim the solutions are either $\boxed{f \equiv 0}$ and $\boxed{f = cx}$. It is easy to verify these both work. Now, we will show that these are the only functions satisfying the given conditions. Plugging in $x = 0$,
\[f(x^2) = xf(x)\]Plugging in $y = 0$,
\[f(-y^2) = -yf(y) = -f(y^2)\]So, $f(a) = -f(-a)$ for all $a$, thus it is odd. Now, we prove the following claim:

$f$ is additive.
We can rewrite the condition as
\[f(x^2 - y^2) = f(x^2) - f(y^2) \implies f(a - b) = f(a) - f(b)\]for all nonnegative reals $a, b$. Now, set $a = x + y, b = y$, for nonnegative $x, y$. This gives
\[f(y) = f(x+y) - f(x) \implies f(x) + f(y) = f(x + y)\]for all $x, y \geq 0$. Since $f$ is odd, we have
\[-f(-x-y) = f(x + y) = f(x) + f(y) = -f(-x) - f(-y) \implies f(-x-y) = f(-x) + f(-y)\]so $f$ is also additive over all the nonpositive reals. Now, rewrite
\[f(x) - f(-y) = f(x + y) \implies f(x) = f(x + y) + f(-y)\]We can set $x = -y + a$ for any $a \geq y \geq 0$, therefore the above equation rewrites as
\[f(a -y) = f(a) + f(-y)\]So, $f(x) + f(y) = f(x + y)$ is also true for all pairs $(a, b)$ with $a \geq 0 \geq b$.


In conclusion, $f$ is additive over all the real numbers. Thus, we have
\[f((x + 1)^2) = f(x^2) + f(2x) + f(1) = xf(x) + 2f(x) + f(1)\]\[f((x + 1)^2) = (x + 1)f(x + 1) = (x + 1)f(x) + xf(1) + f(1)\]Setting the two equations equal, we get
\[(x + 2)f(x) = (x + 1)f(x) + xf(1) \implies f(x) = xf(1) \implies f(x) = cx\]for some $c \in \mathbb{R}$, so we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
eg4334
637 posts
#91
Y by
First, $f(0)=0$ from $P(0, 0)$. Also $y=0$ gives $f(x^2)=xf(x)$ so we have $f(x^2-y^2)=f(x^2)-f(y^2)$. This also tells us that $f$ is odd. In other words $f(a+b)=f(a)+f(b)$ for one of $a, b$ being positive. We can naturally extend this to the other sign cases. Now we consider $f((x+1)^2) = (x+1)(f(x)+f(1)) = f(x^2+2x+1)=xf(x)+2f(x)+f(1)$. This tells us $f(x)=xf(1)$, or $f(x) = kx$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ray66
35 posts
#92
Y by
Let $P(x,y)$ be the assertion that the functional equation holds for $(x,y)$. Plugging $(0,0)$ gives $f(0)=0$ and plugging $P(x,-y)$ gives $f$ is odd. Plugging $P(x,0)$ gives $f(x^2)=xf(x)$ for all real $x$. So for nonnegative real $x$ $P(\sqrt{x},0)$ gives $f(x)=\sqrt{x} f(\sqrt{x}) = x^{\frac{3}{4}}f(x^{\frac{1}{4}}) = \ldots = xf(1)$, and we can extend this to all negatives because $f$ is odd. So $f(x)=cx$ for all real $x$. Plugging this into the original equation gives $c(x^2-y^2)=cx^2-cy^2$, so $f(x)=cx$ is the only solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Marcus_Zhang
980 posts
#93
Y by
Cool ig
This post has been edited 1 time. Last edited by Marcus_Zhang, Mar 14, 2025, 1:46 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Maximilian113
575 posts
#94
Y by
Let $P(x, y)$ denote the assertion. Then $P(x, 0) \implies f(x^2)=xf(x) \implies f(x)=-f(-x).$ Therefore $$P(x) \iff P(x-y)=P(x)-P(y)$$for all nonnegative $x, y.$ Therefore, for positive $x, y$ we have $$f(y)=f(x+y-x)=f(x+y)-f(x) \implies f(x+y)=f(x)+f(y).$$As $f(x)$ is odd, it follows that $f(x)$ is additive. Hence $$(x+1)(f(x)+f(1))=(x+1)f(x+1)=f((x+1)^2) = f(x^2)+2f(x)+f(1) \implies f(x)=xf(1).$$This solution clearly works.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
blueprimes
354 posts
#95
Y by
We claim the answer is $f(x) \equiv cx$ for any constant $c$ which clearly works. Now we prove they are the only ones.

Note that the assertions $(x, 0)$ and $(-x, 0)$ for nonzero $x$ implies $f$ is odd. Now $y = 0$ gives $f(x^2) = x f(x)$ so in fact $f(x^2 - y^2) + f(y^2) = f(x^2)$. Imposing $x^2 > y^2$, replacing $x^2 - y^2 \mapsto x, y^2 \mapsto y$ yields $f(x) + f(y) = f(x + y)$ for all $x, y \ge 0$.

We use this fact to our advantage to decompose terms: Consider $(x, y) \mapsto (x + 1, x)$ for $x \ge 0$, we have
\begin{align*}
2 f(x) + f(1) &= f(2x + 1) \\
&= (x + 1) f(x + 1) - x f(x) \\
&= (x + 1) [f(x) + f(1)] - x f(x) \\
&= f(x) + x f(1) + f(1) \\
\end{align*}so $f(x) \equiv x f(1)$ for $x \ge 0$. But $f$ is odd, so $f(x) \equiv cx$ for some constant $x$ as needed.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
633 posts
#96
Y by
I claim that $f(x) = ax$.

By taking $x = 0, y = 0$ as seperate cases, we see that $f(x^2) = xf(x), f(-y^2)= - yf(y).$ Thus, we also see that $f(x) = -f(-x).$

Thus, we can rewrite our equation as $f(x^2 - y^2) = f(x^2) - f(y^2),$ or $f(x^2 - y^2) + f(y^2) = f(x^2).$ For $x \geq y,$ we see that the domain is all positive, and thus, $(x + 1.434)^2 + (f(x))^2 > 1.$ Now we substitute $x = u + 1$ to get that $f(x) = xf(1). $ Thus, we are done.
Z K Y
N Quick Reply
G
H
=
a