Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Product of consecutive terms divisible by a prime number
BR1F1SZ   0
4 minutes ago
Source: 2025 Francophone MO Seniors P4
Determine all sequences of strictly positive integers $a_1, a_2, a_3, \ldots$ satisfying the following two conditions:
[list]
[*]There exists an integer $M > 0$ such that, for all indices $n \geqslant 1$, $0 < a_n \leqslant M$.
[*]For any prime number $p$ and for any index $n \geqslant 1$, the number
\[
a_n a_{n+1} \cdots a_{n+p-1} - a_{n+p}
\]is a multiple of $p$.
[/list]


0 replies
BR1F1SZ
4 minutes ago
0 replies
Fixed and variable points
BR1F1SZ   0
7 minutes ago
Source: 2025 Francophone MO Seniors P3
Let $\omega$ be a circle with center $O$. Let $B$ and $C$ be two fixed points on the circle $\omega$ and let $A$ be a variable point on $\omega$. We denote by $X$ the intersection point of lines $OB$ and $AC$, assuming $X \neq O$. Let $\gamma$ be the circumcircle of triangle $\triangle AOX$. Let $Y$ be the second intersection point of $\gamma$ with $\omega$. The tangent to $\gamma$ at $Y$ intersects $\omega$ at $I$. The line $OI$ intersects $\omega$ at $J$. The perpendicular bisector of segment $OY$ intersects line $YI$ at $T$, and line $AJ$ intersects $\gamma$ at $P$. We denote by $Z$ the second intersection point of the circumcircle of triangle $\triangle PYT$ with $\omega$. Prove that, as point $A$ varies, points $Y$ and $Z$ remain fixed.
0 replies
BR1F1SZ
7 minutes ago
0 replies
Use 3d paper
YaoAOPS   7
N 11 minutes ago by EGMO
Source: 2025 CTST p4
Recall that a plane divides $\mathbb{R}^3$ into two regions, two parallel planes divide it into three regions, and two intersecting planes divide space into four regions. Consider the six planes which the faces of the cube $ABCD-A_1B_1C_1D_1$ lie on, and the four planes that the tetrahedron $ACB_1D_1$ lie on. How many regions do these ten planes split the space into?
7 replies
YaoAOPS
Mar 6, 2025
EGMO
11 minutes ago
Cyclic ine
m4thbl3nd3r   2
N 31 minutes ago by m4thbl3nd3r
Let $a,b,c>0$ such that $a^2+b^2+c^2=3$. Prove that $$\sum \frac{a^2}{b}+abc \ge 4$$
2 replies
m4thbl3nd3r
Yesterday at 3:34 PM
m4thbl3nd3r
31 minutes ago
No more topics!
Easy Geometry
pokmui9909   5
N Apr 14, 2025 by Korean_fish_Kaohsiung
Source: FKMO 2025 P4
Triangle $ABC$ satisfies $\overline{CA} > \overline{AB}$. Let the incenter of triangle $ABC$ be $\omega$, which touches $BC, CA, AB$ at $D, E, F$, respectively. Let $M$ be the midpoint of $BC$. Let the circle centered at $M$ passing through $D$ intersect $DE, DF$ at $P(\neq D), Q(\neq D)$, respecively. Let line $AP$ meet $BC$ at $N$, line $BP$ meet $CA$ at $L$. Prove that the three lines $EQ, FP, NL$ are concurrent.
5 replies
pokmui9909
Mar 30, 2025
Korean_fish_Kaohsiung
Apr 14, 2025
Easy Geometry
G H J
G H BBookmark kLocked kLocked NReply
Source: FKMO 2025 P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pokmui9909
185 posts
#1 • 1 Y
Y by ehuseyinyigit
Triangle $ABC$ satisfies $\overline{CA} > \overline{AB}$. Let the incenter of triangle $ABC$ be $\omega$, which touches $BC, CA, AB$ at $D, E, F$, respectively. Let $M$ be the midpoint of $BC$. Let the circle centered at $M$ passing through $D$ intersect $DE, DF$ at $P(\neq D), Q(\neq D)$, respecively. Let line $AP$ meet $BC$ at $N$, line $BP$ meet $CA$ at $L$. Prove that the three lines $EQ, FP, NL$ are concurrent.
This post has been edited 1 time. Last edited by pokmui9909, Mar 30, 2025, 5:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Seungjun_Lee
526 posts
#2 • 2 Y
Y by Acorn-SJ, ehuseyinyigit
The exact same (overused) configuration with 2015 USATST P1....
This post has been edited 1 time. Last edited by Seungjun_Lee, Mar 30, 2025, 5:20 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
99 posts
#3 • 1 Y
Y by shafikbara48593762
sketch
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
whwlqkd
99 posts
#4
Y by
Seungjun_Lee wrote:
The exact same (overused) configuration with 2015 USATST P1....

How do you get the data easily?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aidenkim119
33 posts
#5
Y by
Let $NL$ and $AB$ meet at $X$.
$B I N X$ is cyclic, so simson on $BNX$ and $I$ finishes it i guess
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Korean_fish_Kaohsiung
33 posts
#6
Y by
Solved this in like 5 mins
This is just an Iran lemma

Lemma (Iran lemma) : let the foot of $A$ to $CI$ be $K$, then $DF$ and the midsegment of $A$ passes through $K$. The proof of this is that $AKEFI$ are concyclic, and by angle chasing we get that the point where $DF$ and $CI$ meet is also concyclic with $AIEF$, so $K$ is the point where they meet. Furthermore, since the reflection of $A$ wrt. $K$ lies on $BC$ by angle bisector, $K$ is on the midline.

Now since $CE=CD, MD=MP$, so $MP$ is parallel to $AC$, that makes $MP$ the $C$-midline, and $P$ is on $DF$, so $P$ is the foot of $B$ to $AI$, same for $Q$, it is the foot of $C$ to $AI$.
To finish, $EF$ is symmetrical to the line $PQ$, so $EQ \cap FP$ is the reflection of $EP \cap FQ$ over $AI$, which is $D$, and since $BL$ is perpendicular to the bisector of $A$, $NL$ is the reflection of $BN$ over $AI$, and $D$ lies on $BN$ so we are done
Z K Y
N Quick Reply
G
H
=
a