Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
FTW tournament!
evt917   78
N 12 minutes ago by jb2015007
[center]Since all FTW tournaments have dramatically failed, I'm trying a different format. Here is how it works:

1. Type \signup{your rating (type 800 for unrated)}

2. You will pick who you want to play with. You can play if they accept your challenge. So basically the players run everything. Just don't intentionally play low-rated people. Also try to play different people so everyone gets a chance to play!

3. If you win, you get 2 points. However, if you win games in a row, you get more points per win. When you win $n$ games in a row, you score $n+1$ points instead of $2$ points, until you hit getting $ > 8$ points per win, where you just get 8 points per win consistently. A tie equals $1$ point, and a loss is zero. A tie or a loss will break your win streak.

4. I do not know everybody's time preferences. Because so, I will announce in advance which two players will be playing, so they themselves can organize a game themselves. Remember, THE PLAYERS ARE ORGANIZING THE GAMES THEMSELVES!!! The format is up to them, but please make the time control at least 20 seconds. Please announce the results of the game here so i can update the scoreboard. Games can be unrated.

recommended format if you cannot decide



5. The tournament goes on until april 22nd! Extremely long, right? Note that you can still signup after the first games has started, but you will have a disadvantage because some people who signed up as soon as the tournament started already has points.

6. Once you are done with your game, you can find a new opponent and play with them if they want. Have fun!


[rule]

Questions and Answers

All signups and ratings

[rule]

LIVE LEADERBOARD:

1st place: 8 points | streak 1 | 3W 1L 1T |Yrock
2rd place: 3 points | streak 1 | 1W 3L 1T | sadas123
3nd place: 2 points | streak 1 | 1W 0L 0T | jb2015007

4th place: 0 points | streak 0 | 0W 1L 0T | IcyFire500
5th place:
78 replies
evt917
Yesterday at 9:34 PM
jb2015007
12 minutes ago
STATE SOLUTIONS AND STUFF DROPPED!!!
Soupboy0   5
N 20 minutes ago by MathPerson12321
https://www.mathcounts.org/resources/past-competitions
5 replies
+1 w
Soupboy0
an hour ago
MathPerson12321
20 minutes ago
mathcounts state score thread
Soupboy0   64
N 41 minutes ago by SirAppel
\begin{table}[]
\begin{tabular}{llllll}
Username & Score & Sprint & Target & Nats? & Sillies \\
     Soupboy0    &     40  &     24   &   16     &    yes  &    6     \\
         &       &        &        &       &         \\
         &       &        &        &       &        
\end{tabular}\end{table}
64 replies
+1 w
Soupboy0
Apr 1, 2025
SirAppel
41 minutes ago
Fanum Tax
DhruvJha   8
N an hour ago by Orthogonal.
Kai Cenat, IShowSpeed, DhruvJha, MrBeast, and Fanum are all wanting juice boxes. Their chaperone, PewDiePie brought juiceboxes for all of them. Specifically, he brought 15 juice boxes to be all split between them. Fanum, who uses his ability to FanumTax must get 5 or more juiceboxes, or he will boil the earth completely. PewDiePie does not want to this to happen, so how many ways are there for the requirements to be met so FanumTax does not boil the earth? Note that each one of these sigmas must have at least one juicebox.
8 replies
DhruvJha
6 hours ago
Orthogonal.
an hour ago
Problem 2
SlovEcience   1
N an hour ago by Primeniyazidayi
Let \( a, n \) be positive integers and \( p \) be an odd prime such that:
\[
a^p \equiv 1 \pmod{p^n}.
\]Prove that:
\[
a \equiv 1 \pmod{p^{n-1}}.
\]
1 reply
SlovEcience
3 hours ago
Primeniyazidayi
an hour ago
H not needed
dchenmathcounts   45
N an hour ago by EpicBird08
Source: USEMO 2019/1
Let $ABCD$ be a cyclic quadrilateral. A circle centered at $O$ passes through $B$ and $D$ and meets lines $BA$ and $BC$ again at points $E$ and $F$ (distinct from $A,B,C$). Let $H$ denote the orthocenter of triangle $DEF.$ Prove that if lines $AC,$ $DO,$ $EF$ are concurrent, then triangle $ABC$ and $EHF$ are similar.

Robin Son
45 replies
dchenmathcounts
May 23, 2020
EpicBird08
an hour ago
Problem 1
blug   4
N 2 hours ago by grupyorum
Source: Polish Math Olympiad 2025 Finals P1
Find all $(a, b, c, d)\in \mathbb{R}$ satisfying
\[\begin{aligned}
\begin{cases}
    a+b+c+d=0,\\
    a^2+b^2+c^2+d^2=12,\\
    abcd=-3.\\
\end{cases}
\end{aligned}\]
4 replies
blug
Today at 11:46 AM
grupyorum
2 hours ago
A board with crosses that we color
nAalniaOMliO   3
N 2 hours ago by nAalniaOMliO
Source: Belarusian National Olympiad 2025
In some cells of the table $2025 \times 2025$ crosses are placed. A set of 2025 cells we will call balanced if no two of them are in the same row or column. It is known that any balanced set has at least $k$ crosses.
Find the minimal $k$ for which it is always possible to color crosses in two colors such that any balanced set has crosses of both colors.
3 replies
nAalniaOMliO
Mar 28, 2025
nAalniaOMliO
2 hours ago
April Fools Geometry
awesomeming327.   6
N 2 hours ago by GreekIdiot
Let $ABC$ be an acute triangle with $AB<AC$, and let $D$ be the projection from $A$ onto $BC$. Let $E$ be a point on the extension of $AD$ past $D$ such that $\angle BAC+\angle BEC=90^\circ$. Let $L$ be on the perpendicular bisector of $AE$ such that $L$ and $C$ are on the same side of $AE$ and
\[\frac12\angle ALE=1.4\angle ABE+3.4\angle ACE-558^\circ\]Let the reflection of $D$ across $AB$ and $AC$ be $W$ and $Y$, respectively. Let $X\in AW$ and $Z\in AY$ such that $\angle XBE=\angle ZCE=90^\circ$. Let $EX$ and $EZ$ intersect the circumcircles of $EBD$ and $ECD$ at $J$ and $K$, respectively. Let $LB$ and $LC$ intersect $WJ$ and $YK$ at $P$ and $Q$. Let $PQ$ intersect $BC$ at $F$. Prove that $FB/FC=DB/DC$.
6 replies
awesomeming327.
Apr 1, 2025
GreekIdiot
2 hours ago
Functional equations
hanzo.ei   14
N 2 hours ago by jasperE3
Source: Greekldiot
Find all $f: \mathbb R_+ \rightarrow \mathbb R_+$ such that $f(xf(y)+f(x))=yf(x+yf(x)) \: \forall \: x,y \in \mathbb R_+$
14 replies
hanzo.ei
Mar 29, 2025
jasperE3
2 hours ago
Problem 1
SlovEcience   2
N 2 hours ago by Raven_of_the_old
Prove that
\[
C(p-1, k-1) \equiv (-1)^{k-1} \pmod{p}
\]for \( 1 \leq k \leq p-1 \), where \( C(n, m) \) is the binomial coefficient \( n \) choose \( m \).
2 replies
SlovEcience
4 hours ago
Raven_of_the_old
2 hours ago
Conditional maximum
giangtruong13   1
N 2 hours ago by giangtruong13
Source: Specialized Math
Let $a,b$ satisfy that: $1 \leq a \leq2$ and $1 \leq b \leq 2$. Find the maximum: $$A=(a+b^2+\frac{4}{a^2}+\frac{2}{b})(b+a^2+\frac{4}{b^2}+\frac{2}{a})$$
1 reply
giangtruong13
Mar 22, 2025
giangtruong13
2 hours ago
four variables inequality
JK1603JK   0
2 hours ago
Source: unknown?
Prove that $$27(a^4+b^4+c^4+d^4)+148abcd\ge (a+b+c+d)^4,\ \ \forall a,b,c,d\ge 0.$$
0 replies
JK1603JK
2 hours ago
0 replies
a hard geometry problen
Tuguldur   0
3 hours ago
Let $ABCD$ be a convex quadrilateral. Suppose that the circles with diameters $AB$ and $CD$ intersect at points $X$ and $Y$. Let $P=AC\cap BD$ and $Q=AD\cap BC$. Prove that the points $P$, $Q$, $X$ and $Y$ are concyclic.
( $AB$ and $CD$ are not the diagnols)
0 replies
Tuguldur
3 hours ago
0 replies
Probability NOT a perfect square
orangefronted   4
N Yesterday at 5:12 AM by ilikemath247365
Mike decides to play a game with himself. He begins with a score of 0 and proceeds to flip a fair coin. If he lands on heads, he adds 2 to his score. If he lands on tails, he subtracts 1 from his score. After 5 flips, what is the probability that Mike’s score is not a perfect square?
4 replies
orangefronted
Apr 1, 2025
ilikemath247365
Yesterday at 5:12 AM
Probability NOT a perfect square
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orangefronted
864 posts
#1
Y by
Mike decides to play a game with himself. He begins with a score of 0 and proceeds to flip a fair coin. If he lands on heads, he adds 2 to his score. If he lands on tails, he subtracts 1 from his score. After 5 flips, what is the probability that Mike’s score is not a perfect square?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
martianrunner
133 posts
#2 • 2 Y
Y by Didi_Chua, giratina3
sol
This post has been edited 2 times. Last edited by martianrunner, Apr 2, 2025, 3:55 PM
Reason: hiding solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Owen314159
9 posts
#3
Y by
@above you should put that in a Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
giratina3
477 posts
#4 • 1 Y
Y by Didi_Chua
My Approach
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ilikemath247365
225 posts
#5
Y by
If he gets $x$ heads and $y$ tails, his score will be: $2x - y$. We also know $x + y = 5$. Let's list out possible values of $x$ and $y$ and see which pairs give $2x - y$ to be a perfect square(we will be using complementary counting). If $x = 0, y = 5$, this is impossible. If $x = 1, y = 4$, this is also impossible. If $x = 2, y = 3$, this will give us that $2x - y = 1$, which is a perfect square. If $x = 3, y = 2$, this will give us that $2x - y = 4$, which is a perfect square. If $x = 4, y = 1$, this is impossible. If $x = 5, y = 0$, this is impossible. So, Mike will only get a perfect square if he gets either $2$ heads and $3$ tails or $3$ heads and $2$ tails. If Mike gets $2$ heads and $3$ tails, there are $10$ possible ways to do this($5$ factorial ways to arrange the $5$ flips, then divide by the $2$ factorial ways to arrange the heads and the $3$ factorial ways to arrange the tails). Similarly, there are $10$ possible ways to do the second case. So we can have a total of $10 + 10 = 20$ total possible occurrences for which Mike WILL get a perfect square. The probability is simply $\frac{20}{2^{5}} = \frac{20}{32} = \frac{5}{8}$. Taking the complementary of this, we get our final probability of $\boxed{\frac{3}{8}}$.
Z K Y
N Quick Reply
G
H
=
a