Y by PikaPika999, cursed_tangent1434
On triangle
, draw exterior equilateral triangles on sides
and
to obtain
and
, respectively. Let
be the intersection of the altitude through
and the median through
. Let
be the intersection of the altitude through
and line
. Let
be the intersection of the median through
and the line
. Prove that
,
, and
lie on a common line.
![[asy]
size(481.245,258.036);
label("$A$", (-1.5,7.8));
label("$B$", (5.2, 0.7));
label("$C$", (-5.3,0.7));
label("$B'$", (-9.1,7.4));
label("$C'$", (7.8,9.8));
path line = (0,1)--(-1.40861,7.40089);
draw(line, gray+linewidth(1.5)+solid );
path line = (-5,1)--(1.7957,4.20044);
draw(line, gray+linewidth(1.5)+solid );
path line = (-1.40861,1)--(-1.40861,7.40089);
draw(line, orange+linewidth(1.5)+solid );
path line = (-2.60567,5.26737)--(5,1);
draw(line, orange+linewidth(1.5)+solid );
path line = (-8.74763,7.31068)--(5,1);
draw(line, blue+linewidth(1.5)+solid );
path line = (-5,1)--(7.33903,9.75046);
draw(line, blue+linewidth(1.5)+solid );
path line = (5,1)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-8.74763,7.31068)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-1.40861,7.40089)--(7.33903,9.75046);
draw(line, black+linewidth(2.5)+solid );
path line = (-8.74763,7.31068)--(-5,1);
draw(line, black+linewidth(2.5)+solid );
path line = (-5,1)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-5,1)--(5,1);
draw(line, black+linewidth(2.5)+solid );
path line = (5,1)--(7.33903,9.75046);
draw(line, black+linewidth(2.5)+solid );
path line = (-10.3821,3.4813)--(8.86775,3.62203);
draw(line, rgb(0, 0.666, 0)+linewidth(1)+dashed);
dot((0.436645,3.5604), linewidth(3)+solid);
dot((-1.40861,3.54691), linewidth(3)+solid);
dot((-0.561846,3.5531), linewidth(3)+solid);
path frame = (-10.3821,-0.0943394)--(-10.3821,10.2271)--(8.86775,10.2271)--(8.86775,-0.0943394)--cycle;
clip(frame);
[/asy]](//latex.artofproblemsolving.com/4/6/9/469fd874cf0fb80a65093eb5bb02d383b06b4bcb.png)

















![[asy]
size(481.245,258.036);
label("$A$", (-1.5,7.8));
label("$B$", (5.2, 0.7));
label("$C$", (-5.3,0.7));
label("$B'$", (-9.1,7.4));
label("$C'$", (7.8,9.8));
path line = (0,1)--(-1.40861,7.40089);
draw(line, gray+linewidth(1.5)+solid );
path line = (-5,1)--(1.7957,4.20044);
draw(line, gray+linewidth(1.5)+solid );
path line = (-1.40861,1)--(-1.40861,7.40089);
draw(line, orange+linewidth(1.5)+solid );
path line = (-2.60567,5.26737)--(5,1);
draw(line, orange+linewidth(1.5)+solid );
path line = (-8.74763,7.31068)--(5,1);
draw(line, blue+linewidth(1.5)+solid );
path line = (-5,1)--(7.33903,9.75046);
draw(line, blue+linewidth(1.5)+solid );
path line = (5,1)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-8.74763,7.31068)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-1.40861,7.40089)--(7.33903,9.75046);
draw(line, black+linewidth(2.5)+solid );
path line = (-8.74763,7.31068)--(-5,1);
draw(line, black+linewidth(2.5)+solid );
path line = (-5,1)--(-1.40861,7.40089);
draw(line, black+linewidth(2.5)+solid );
path line = (-5,1)--(5,1);
draw(line, black+linewidth(2.5)+solid );
path line = (5,1)--(7.33903,9.75046);
draw(line, black+linewidth(2.5)+solid );
path line = (-10.3821,3.4813)--(8.86775,3.62203);
draw(line, rgb(0, 0.666, 0)+linewidth(1)+dashed);
dot((0.436645,3.5604), linewidth(3)+solid);
dot((-1.40861,3.54691), linewidth(3)+solid);
dot((-0.561846,3.5531), linewidth(3)+solid);
path frame = (-10.3821,-0.0943394)--(-10.3821,10.2271)--(8.86775,10.2271)--(8.86775,-0.0943394)--cycle;
clip(frame);
[/asy]](http://latex.artofproblemsolving.com/4/6/9/469fd874cf0fb80a65093eb5bb02d383b06b4bcb.png)
This post has been edited 4 times. Last edited by cooljoseph, Apr 6, 2025, 9:56 PM
Reason: Fixed first sentence
Reason: Fixed first sentence