Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Prove that two different boards can be obtained
hectorleo123   1
N 5 minutes ago by Joalro178
Source: 2014 Peru Ibero TST P2
Let $n\ge 4$ be an integer. You have two $n\times n$ boards. Each board contains the numbers $1$ to $n^2$ inclusive, one number per square, arbitrarily arranged on each board. A move consists of exchanging two rows or two columns on the first board (no moves can be made on the second board). Show that it is possible to make a sequence of moves such that for all $1 \le i \le n$ and $1 \le j \le n$, the number that is in the $i-th$ row and $j-th$ column of the first board is different from the number that is in the $i-th$ row and $j-th$ column of the second board.
1 reply
hectorleo123
Sep 15, 2023
Joalro178
5 minutes ago
Italian WinterCamps test07 Problem4
mattilgale   90
N 18 minutes ago by mathwiz_1207
Source: ISL 2006, G3, VAIMO 2007/5
Let $ ABCDE$ be a convex pentagon such that
\[ \angle BAC = \angle CAD = \angle DAE\qquad \text{and}\qquad \angle ABC = \angle ACD = \angle ADE.
\]The diagonals $BD$ and $CE$ meet at $P$. Prove that the line $AP$ bisects the side $CD$.

Proposed by Zuming Feng, USA
90 replies
mattilgale
Jan 29, 2007
mathwiz_1207
18 minutes ago
Iran TST P8
TheBarioBario   8
N an hour ago by Mysteriouxxx
Source: Iranian TST 2022 problem 8
In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$.

Proposed by Amirmahdi Mohseni
8 replies
TheBarioBario
Apr 2, 2022
Mysteriouxxx
an hour ago
IMO 2010 Problem 6
mavropnevma   42
N an hour ago by awesomeming327.
Let $a_1, a_2, a_3, \ldots$ be a sequence of positive real numbers, and $s$ be a positive integer, such that
\[a_n = \max \{ a_k + a_{n-k} \mid 1 \leq k \leq n-1 \} \ \textrm{ for all } \ n > s.\]
Prove there exist positive integers $\ell \leq s$ and $N$, such that
\[a_n = a_{\ell} + a_{n - \ell} \ \textrm{ for all } \ n \geq N.\]

Proposed by Morteza Saghafiyan, Iran
42 replies
mavropnevma
Jul 8, 2010
awesomeming327.
an hour ago
PJ // AC iff BC^2 = AC· QC
parmenides51   1
N 2 hours ago by FrancoGiosefAG
Source: Mexican Mathematical Olympiad 1998 OMM P5
The tangents at points $B$ and $C$ on a given circle meet at point $A$. Let $Q$ be a point on segment $AC$ and let $BQ$ meet the circle again at $P$. The line through $Q $ parallel to $AB$ intersects $BC$ at $J$. Prove that $PJ$ is parallel to $AC$ if and only if $BC^2 = AC\cdot QC$.
1 reply
parmenides51
Jul 28, 2018
FrancoGiosefAG
2 hours ago
Self-evident inequality trick
Lukaluce   10
N 3 hours ago by ytChen
Source: 2025 Junior Macedonian Mathematical Olympiad P4
Let $x, y$, and $z$ be positive real numbers, such that $x^2 + y^2 + z^2 = 3$. Prove the inequality
\[\frac{x^3}{2 + x} + \frac{y^3}{2 + y} + \frac{z^3}{2 + z} \ge 1.\]When does the equality hold?
10 replies
Lukaluce
Sunday at 3:34 PM
ytChen
3 hours ago
Power Of Factorials
Kassuno   181
N 3 hours ago by SomeonecoolLovesMaths
Source: IMO 2019 Problem 4
Find all pairs $(k,n)$ of positive integers such that \[ k!=(2^n-1)(2^n-2)(2^n-4)\cdots(2^n-2^{n-1}). \]Proposed by Gabriel Chicas Reyes, El Salvador
181 replies
Kassuno
Jul 17, 2019
SomeonecoolLovesMaths
3 hours ago
Gergonne point Harmonic quadrilateral
niwobin   4
N 3 hours ago by on_gale
Triangle ABC has incircle touching the sides at D, E, F as shown.
AD, BE, CF concurrent at Gergonne point G.
BG and CG cuts the incircle at X and Y, respectively.
AG cuts the incircle at K.
Prove: K, X, D, Y form a harmonic quadrilateral. (KX/KY = DX/DY)
4 replies
niwobin
May 17, 2025
on_gale
3 hours ago
NCG Returns!
blacksheep2003   64
N 3 hours ago by SomeonecoolLovesMaths
Source: USEMO 2020 Problem 1
Which positive integers can be written in the form \[\frac{\operatorname{lcm}(x, y) + \operatorname{lcm}(y, z)}{\operatorname{lcm}(x, z)}\]for positive integers $x$, $y$, $z$?
64 replies
blacksheep2003
Oct 24, 2020
SomeonecoolLovesMaths
3 hours ago
Binomial stuff
Arne   2
N 4 hours ago by Speedysolver1
Source: Belgian IMO preparation
Let $p$ be prime, let $n$ be a positive integer, show that \[ \gcd\left({p - 1 \choose n - 1}, {p + 1 \choose n}, {p \choose n + 1}\right) = \gcd\left({p \choose n - 1}, {p - 1 \choose n}, {p + 1 \choose n + 1}\right). \]
2 replies
Arne
Apr 4, 2006
Speedysolver1
4 hours ago
Geometry hard problem
noneofyou34   1
N 4 hours ago by Lil_flip38
Let ABC be a triangle with incircle Γ. The tangency points of Γ with sides BC, CA, AB are A1, B1, C1 respectively. Line B1C1 intersects line BC at point A2. Similarly, points B2 and C2 are constructed. Prove that the perpendicular lines from A2, B2, C2 to lines AA1, BB1, CC1 respectively are concurret.
1 reply
noneofyou34
Yesterday at 3:13 PM
Lil_flip38
4 hours ago
segment of projections is half as sidelength, right triangle inscribed in right
parmenides51   3
N 4 hours ago by NumberzAndStuff
Source: 2020 Austrian Federal Competition For Advanced Students, Part 1, p2
Let $ABC$ be a right triangle with a right angle in $C$ and a circumcenter $U$. On the sides $AC$ and $BC$, the points $D$ and $E$ lie in such a way that $\angle EUD = 90 ^o$. Let $F$ and $G$ be the projection of $D$ and $E$ on $AB$, respectively. Prove that $FG$ is half as long as $AB$.

(Walther Janous)
3 replies
parmenides51
Nov 22, 2020
NumberzAndStuff
4 hours ago
Austrian Regional MO 2025 P2
BR1F1SZ   3
N 4 hours ago by NumberzAndStuff
Source: Austrian Regional MO
Let $\triangle{ABC}$ be an isosceles triangle with $AC = BC$ and circumcircle $\omega$. The line through $B$ perpendicular to $BC$ is denoted by $\ell$. Furthermore, let $M$ be any point on $\ell$. The circle $\gamma$ with center $M$ and radius $BM$ intersects $AB$ once more at point $P$ and the circumcircle $\omega$ once more at point $Q$. Prove that the points $P,Q$ and $C$ lie on a straight line.

(Karl Czakler)
3 replies
BR1F1SZ
Apr 18, 2025
NumberzAndStuff
4 hours ago
Computing functions
BBNoDollar   5
N 4 hours ago by ICE_CNME_4
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )
5 replies
BBNoDollar
Sunday at 5:25 PM
ICE_CNME_4
4 hours ago
Weird function?
ItzsleepyXD   2
N May 9, 2025 by ItzsleepyXD
Source: Own
Find all functions \( f: \mathbb{R} \rightarrow \mathbb{R} \) such that for all \( x, y \in \mathbb{R} \),
\[
f(x + f(2y)) + f(x^2 - y) = f(f(x)) f(x + 1) + 2y - f(y).
\]
2 replies
ItzsleepyXD
Apr 11, 2025
ItzsleepyXD
May 9, 2025
Weird function?
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItzsleepyXD
147 posts
#1
Y by
Find all functions \( f: \mathbb{R} \rightarrow \mathbb{R} \) such that for all \( x, y \in \mathbb{R} \),
\[
f(x + f(2y)) + f(x^2 - y) = f(f(x)) f(x + 1) + 2y - f(y).
\]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItzsleepyXD
147 posts
#2
Y by
Bump Bump :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ItzsleepyXD
147 posts
#3
Y by
Bump again :-D
Z K Y
N Quick Reply
G
H
=
a