ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples: Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿) Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote][/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve , do not answer with " is a solution" only. Either you post any kind of proof or at least something unexpected (like " is the smallest solution). Someone that does not see that is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
In a scalene triangle , points and lie on and respectively such that . Points and are the reflections of and with respect to the midpoints of sides and , respectively. Point lies on segment such that the circumcenter of triangle coincides with the circumcenter of triangle .
Prove that the nine-point circle of triangle passes through the midpoint of segment .
Note to moderators: I had no idea if this is the ideal forum for this or not, feel free to move it wherever you want ;)
Hi everyone,
I am a random 14 years old 9th grader, national olympiad winner, and silver medalist in the francophone olympiad of maths (junior section) Click here to see the test in itself.
While on paper, this might seem like a solid background (and tbh it kinda is); but I only have one problem rn: an extreme lack of preparation (You'll understand very soon just keep reading :D ).
You see, when the francophone olympiad, the national olympiad and the international kangaroo ended (and they where in the span of 4 days!!!) I've told myself :"aight, enough math, take a break till summer" (and btw, summer starts rh in July and ends in October) and from then I didn't seriously study maths.
That was until yesterday, (see, none of our senior's year students could go because the bachelor's degree exam and the IMO's dates coincide). So they replaced them with us, junior students. And suddenly, with no previous warning, I found myself at the very bottom of the IMO list of participants. And it's been months since I last "seriously" studied maths.
I'm really looking forward to this incredible journey, and potentially winning a medal :laugh: . But regardless of my results I know it'll be a fantastic journey with this very large and kind community.
Any advices or help is more than welcome <3 .Thank yall for helping me reach and surpass a ton of my goals.
Sincerely.
Let be a triangle with a circle with center tangent to sides at respectively. Suppose the circle with diameter intersects the circumcircle of again at is the reflection of over . Suppose points lie on such that are parallel to . Prove that: The intersection of lie on the circumcircle of
Let be a sequence of positive real numbers such that for every , we have: Prove that there exists a natural number such that for all , the following holds:
Let be an acute triangle with and let be its orthocenter. Let be a point on the perpendicular bisector of such that and and are on different sides of , a point on the perpendicular bisector of such that and a point on the perpendicular bisector of such that and lie on the opposite side of w.r.t . Prove that and are collinear.
A square is filled with numbers .The numbers inside four squares is summed,and arranged in an increasing order. Is it possible to obtain the following sequences as a result of this operation?
Let be a triangle with points lie on the perpendicular bisector of such that lie on a circle. Suppose are perpendicular to sides at points The tangent lines from points to the circumcircle of intersects at point Prove that: are parallel.
Find (AB * CD) / (AC * BD) & prove orthogonality of circles
Maverick15
N6 hours ago
by Ilikeminecraft
Source: IMO 1993, Day 1, Problem 2
Let ,,, be four points in the plane, with and on the same side of the line , such that and . Find the ratio
and prove that the circumcircles of the triangles and are orthogonal. (Intersecting circles are said to be orthogonal if at either common point their tangents are perpendicuar. Thus, proving that the circumcircles of the triangles and are orthogonal is equivalent to proving that the tangents to the circumcircles of the triangles and at the point are perpendicular.)
The only solution is and . This clearly works. Now we prove it's the only solution. By mod , has to be even, so let . Additionally, let the expression be . We have
Case 1: .
Then , so , which is impossible by Mihailescu/Zsigmondy.
Case 2: .
Then since doesn't divide , has to be a power of . Since ,, so . Thus, is a power of . Since and multiply to , we have and , which fails due to size.
Case 3: .
Then since doesn't divide , has to be a power of . Since ,, so . Thus, is a power of . Since and multiply to , we have and . This implies that is a power of . By Zsigmondy's Theorem, for any , we can choose a prime dividing so that does not divide , and therefore is not a power of . Hence , so , giving .
We have that . Working mod 3: . isn't a quadratic residue, so must be even.
If , then .
If there is a prime such and , but that would mean . Contradiction.
With that, and knowing that and , we have that:
Working mod 5: , so must be odd because .
Suppose that , then (that last equivalence because is odd). Contradiction. Then . Knowing that grows faster than , the unique answer is . So we have .
Edit: Forgot one case: If , then , but the residues mod 7 of are . Contradiction.
This post has been edited 4 times. Last edited by KAME06, Apr 16, 2025, 6:57 PM
There might be some overlap with the previous posts but I'll post my solution anyway.
Mod 3 we have hence is even.
If then . Then are coprime and hence . If then hence is the only solution. This gives , from now on .
Then mod 8 we have hence is even and .
Then . Now hence .
Then hence and we have . The only powers of are , contradiction.