Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Anything real in this system must be integer
Assassino9931   1
N 33 minutes ago by lksb
Source: Al-Khwarizmi International Junior Olympiad 2025 P1
Determine the largest integer $c$ for which the following statement holds: there exists at least one triple $(x,y,z)$ of integers such that
\begin{align*} x^2 + 4(y + z) = y^2 + 4(z + x) = z^2 + 4(x + y) = c \end{align*}and all triples $(x,y,z)$ of real numbers, satisfying the equations, are such that $x,y,z$ are integers.

Marek Maruin, Slovakia
1 reply
Assassino9931
Friday at 9:26 AM
lksb
33 minutes ago
geometry problem
kjhgyuio   0
an hour ago
........
0 replies
kjhgyuio
an hour ago
0 replies
Concurrency of two lines and a circumcircle
BR1F1SZ   1
N an hour ago by MathLuis
Source: 2025 Francophone MO Juniors P3
Let $\triangle{ABC}$ be a triangle, $\omega$ its circumcircle and $O$ the center of $\omega$. Let $P$ be a point on the segment $BC$. We denote by $Q$ the second intersection point of the circumcircles of triangles $\triangle{AOB}$ and $\triangle{APC}$. Prove that the line $PQ$ and the tangent to $\omega$ at point $A$ intersect on the circumcircle of triangle $\triangle AOB$.
1 reply
BR1F1SZ
2 hours ago
MathLuis
an hour ago
IMO Shortlist 2009 - Problem A2
April   93
N an hour ago by ezpotd
Let $a$, $b$, $c$ be positive real numbers such that $\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} = a+b+c$. Prove that:
\[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16}.\]
Proposed by Juhan Aru, Estonia
93 replies
April
Jul 5, 2010
ezpotd
an hour ago
Product of consecutive terms divisible by a prime number
BR1F1SZ   0
an hour ago
Source: 2025 Francophone MO Seniors P4
Determine all sequences of strictly positive integers $a_1, a_2, a_3, \ldots$ satisfying the following two conditions:
[list]
[*]There exists an integer $M > 0$ such that, for all indices $n \geqslant 1$, $0 < a_n \leqslant M$.
[*]For any prime number $p$ and for any index $n \geqslant 1$, the number
\[
a_n a_{n+1} \cdots a_{n+p-1} - a_{n+p}
\]is a multiple of $p$.
[/list]


0 replies
BR1F1SZ
an hour ago
0 replies
Fixed and variable points
BR1F1SZ   0
an hour ago
Source: 2025 Francophone MO Seniors P3
Let $\omega$ be a circle with center $O$. Let $B$ and $C$ be two fixed points on the circle $\omega$ and let $A$ be a variable point on $\omega$. We denote by $X$ the intersection point of lines $OB$ and $AC$, assuming $X \neq O$. Let $\gamma$ be the circumcircle of triangle $\triangle AOX$. Let $Y$ be the second intersection point of $\gamma$ with $\omega$. The tangent to $\gamma$ at $Y$ intersects $\omega$ at $I$. The line $OI$ intersects $\omega$ at $J$. The perpendicular bisector of segment $OY$ intersects line $YI$ at $T$, and line $AJ$ intersects $\gamma$ at $P$. We denote by $Z$ the second intersection point of the circumcircle of triangle $\triangle PYT$ with $\omega$. Prove that, as point $A$ varies, points $Y$ and $Z$ remain fixed.
0 replies
BR1F1SZ
an hour ago
0 replies
Use 3d paper
YaoAOPS   7
N an hour ago by EGMO
Source: 2025 CTST p4
Recall that a plane divides $\mathbb{R}^3$ into two regions, two parallel planes divide it into three regions, and two intersecting planes divide space into four regions. Consider the six planes which the faces of the cube $ABCD-A_1B_1C_1D_1$ lie on, and the four planes that the tetrahedron $ACB_1D_1$ lie on. How many regions do these ten planes split the space into?
7 replies
YaoAOPS
Mar 6, 2025
EGMO
an hour ago
Cyclic ine
m4thbl3nd3r   2
N 2 hours ago by m4thbl3nd3r
Let $a,b,c>0$ such that $a^2+b^2+c^2=3$. Prove that $$\sum \frac{a^2}{b}+abc \ge 4$$
2 replies
m4thbl3nd3r
Yesterday at 3:34 PM
m4thbl3nd3r
2 hours ago
GCD and LCM operations
BR1F1SZ   0
2 hours ago
Source: 2025 Francophone MO Juniors P4
Charlotte writes the integers $1,2,3,\ldots,2025$ on the board. Charlotte has two operations available: the GCD operation and the LCM operation.
[list]
[*]The GCD operation consists of choosing two integers $a$ and $b$ written on the board, erasing them, and writing the integer $\operatorname{gcd}(a, b)$.
[*]The LCM operation consists of choosing two integers $a$ and $b$ written on the board, erasing them, and writing the integer $\operatorname{lcm}(a, b)$.
[/list]
An integer $N$ is called a winning number if there exists a sequence of operations such that, at the end, the only integer left on the board is $N$. Find all winning integers among $\{1,2,3,\ldots,2025\}$ and, for each of them, determine the minimum number of GCD operations Charlotte must use.

Note: The number $\operatorname{gcd}(a, b)$ denotes the greatest common divisor of $a$ and $b$, while the number $\operatorname{lcm}(a, b)$ denotes the least common multiple of $a$ and $b$.
0 replies
BR1F1SZ
2 hours ago
0 replies
Balanced grids
BR1F1SZ   0
2 hours ago
Source: 2025 Francophone MO Juniors/Seniors P2
Let $n \geqslant 2$ be an integer. We consider a square grid of size $2n \times 2n$ divided into $4n^2$ unit squares. The grid is called balanced if:
[list]
[*]Each cell contains a number equal to $-1$, $0$ or $1$.
[*]The absolute value of the sum of the numbers in the grid does not exceed $4n$.
[/list]
Determine, as a function of $n$, the smallest integer $k \geqslant 1$ such that any balanced grid always contains an $n \times n$ square whose absolute sum of the $n^2$ cells is less than or equal to $k$.
0 replies
BR1F1SZ
2 hours ago
0 replies
Tetrahedron
4everwise   3
N 3 hours ago by aidan0626
Four balls of radius 1 are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals

$\text{(A)} \ 4\sqrt 2 \qquad \text{(B)} \ 4\sqrt 3 \qquad \text{(C)} \ 2\sqrt 6 \qquad \text{(D)} \ 1+2\sqrt 6 \qquad \text{(E)} \ 2+2\sqrt 6$
3 replies
4everwise
Jan 1, 2006
aidan0626
3 hours ago
Calculate the distance AD
MTA_2024   6
N 3 hours ago by WheatNeat
A semi-circle is inscribed in a quadrilateral $ABCD$. The center $O$ of the semi-circle is the midpoint of segment $AD$. We have $AB=9$ and $CD=16$.
Calculate the distance $AD$.
6 replies
MTA_2024
Friday at 3:50 PM
WheatNeat
3 hours ago
Question from Gazeta matematica
abcdefghijklmop   5
N 4 hours ago by abcdefghijklmop
Determine how many subsets formed by 7 elements which are in geometric progession are in the set
{1,2,....,2025}.
5 replies
abcdefghijklmop
6 hours ago
abcdefghijklmop
4 hours ago
Unknown triangle area
smartvong   2
N 5 hours ago by vanstraelen
The diagram shows a convex quadrilateral $ABCD$. The points $E$ and $F$ divide $AB$ into three equal parts while the points $G$ and $H$ divide $CD$ into three equal parts. The line segments $AH$ and $ED$ intersect at $I$. The line segments $CF$ and $BG$ intersect at $J$. Given that the areas of the triangles $AID$, $EHI$ and $FJG$ are $154$, $112$, and $99$ respectively, find the area of the triangle $BJC$.

IMAGE
2 replies
smartvong
May 8, 2025
vanstraelen
5 hours ago
2 rectangles 2024 TMC AIME Mock #5
parmenides51   1
N Apr 26, 2025 by titaniumfalcon
Let $ABCD$ be a rectangle. Points $E$ and $F$ are chosen on $BC$ and $CD$ respectively such that there exists a point G such that quadrilateral $AEFG$ is a rectangle. If $AD = 52$, $AG = 41$, and $DG = 15$, then $AE$ can be expressed in the form $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
1 reply
parmenides51
Apr 26, 2025
titaniumfalcon
Apr 26, 2025
2 rectangles 2024 TMC AIME Mock #5
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30652 posts
#1
Y by
Let $ABCD$ be a rectangle. Points $E$ and $F$ are chosen on $BC$ and $CD$ respectively such that there exists a point G such that quadrilateral $AEFG$ is a rectangle. If $AD = 52$, $AG = 41$, and $DG = 15$, then $AE$ can be expressed in the form $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
titaniumfalcon
116 posts
#2
Y by
solution

oops the website glitched and I posted on the wrong thread, my bad and ignore that solution
This post has been edited 1 time. Last edited by titaniumfalcon, Apr 26, 2025, 8:25 PM
Z K Y
N Quick Reply
G
H
=
a