Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Hojoo Lee problem 73
Leon   25
N 23 minutes ago by sqing
Source: Belarus 1998
Let $a$, $b$, $c$ be real positive numbers. Show that \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1\]
25 replies
Leon
Aug 21, 2006
sqing
23 minutes ago
Almost Squarefree Integers
oVlad   3
N 30 minutes ago by Primeniyazidayi
Source: Romania Junior TST 2025 Day 1 P1
A positive integer $n\geqslant 3$ is almost squarefree if there exists a prime number $p\equiv 1\bmod 3$ such that $p^2\mid n$ and $n/p$ is squarefree. Prove that for any almost squarefree positive integer $n$ the ratio $2\sigma(n)/d(n)$ is an integer.
3 replies
+1 w
oVlad
Apr 12, 2025
Primeniyazidayi
30 minutes ago
Math camp combi
ErTeeEs06   3
N 31 minutes ago by genius_007
Source: BxMO 2025 P2
Let $N\geq 2$ be a natural number. At a mathematical olympiad training camp the same $N$ courses are organised every day. Each student takes exactly one of the $N$ courses each day. At the end of the camp, every student has takes each course exactly once, and any two students took the same course on at least one day, but took different courses on at least one other day. What is, in terms of $N$, the largest possible number of students at the camp?
3 replies
ErTeeEs06
Apr 26, 2025
genius_007
31 minutes ago
Benelux fe
ErTeeEs06   10
N 40 minutes ago by genius_007
Source: BxMO 2025 P1
Does there exist a function $f:\mathbb{R}\to \mathbb{R}$ such that $$f(x^2+f(y))=f(x)^2-y$$for all $x, y\in \mathbb{R}$?
10 replies
ErTeeEs06
Apr 26, 2025
genius_007
40 minutes ago
IMO Shortlist Problems
ABCD1728   0
an hour ago
Source: IMO official website
Where can I get the official solution for ISL before 2005? The official website only has solutions after 2006. Thanks :)
0 replies
ABCD1728
an hour ago
0 replies
Geometric inequality in quadrilateral
BBNoDollar   0
an hour ago
Source: Romanian Mathematical Gazette 2025
Let ABCD be a convex quadrilateral with angles BAD and BCD obtuse, and let the points E, F ∈ BD, such that AE ⊥ BD and CF ⊥ BD.
Prove that 1/(AE*CF) ≥ 1/(AB*BC) + 1/(AD*CD) .
0 replies
BBNoDollar
an hour ago
0 replies
A coincidence about triangles with common incenter
flower417477   2
N an hour ago by flower417477
$\triangle ABC,\triangle ADE$ have the same incenter $I$.Prove that $BCDE$ is concyclic iff $BC,DE,AI$ is concurrent
2 replies
flower417477
Wednesday at 2:08 PM
flower417477
an hour ago
Function equation
LeDuonggg   5
N 2 hours ago by luutrongphuc
Find all functions $f: \mathbb{R^+} \rightarrow \mathbb{R^+}$ , such that for all $x,y>0$:
\[ f(x+f(y))=\dfrac{f(x)}{1+f(xy)}\]
5 replies
LeDuonggg
Yesterday at 2:59 PM
luutrongphuc
2 hours ago
Consecutive sum of integers sum up to 2020
NicoN9   2
N 2 hours ago by NicoN9
Source: Japan Junior MO Preliminary 2020 P2
Let $a$ and $b$ be positive integers. Suppose that the sum of integers between $a$ and $b$, including $a$ and $b$, are equal to $2020$.
All among those pairs $(a, b)$, find the pair such that $a$ achieves the minimum.
2 replies
NicoN9
Today at 6:09 AM
NicoN9
2 hours ago
Range of a^3+b^3-3c
Kunihiko_Chikaya   1
N 2 hours ago by Mathzeus1024
Let $a,\ b,\ c$ be real numbers such that $b<\frac{1}{c}<a$ and

$$\begin{cases}a+b+c=1 \ \\ a^2+b^2+c^2=23	

\end{cases}$$
Find the range of $a^3+b^3-3c.$


Proposed by Kunihiko Chikaya/September 23, 2020
1 reply
Kunihiko_Chikaya
Sep 23, 2020
Mathzeus1024
2 hours ago
a