Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
FE solution too simple?
Yiyj1   6
N an hour ago by Primeniyazidayi
Source: 101 Algebra Problems from the AMSP
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
6 replies
Yiyj1
Apr 9, 2025
Primeniyazidayi
an hour ago
Combo problem
soryn   1
N an hour ago by soryn
The school A has m1 boys and m2 girls, and ,the school B has n1 boys and n2 girls. Each school is represented by one team formed by p students,boys and girls. If f(k) is the number of cases for which,the twice schools has,togheter k girls, fund f(k) and the valute of k, for which f(k) is maximum.
1 reply
soryn
6 hours ago
soryn
an hour ago
Two very hard parallel
jayme   5
N an hour ago by jayme
Source: own inspired by EGMO
Dear Mathlinkers,

1. ABC a triangle
2. D, E two point on the segment BC so that BD = DE= EC
3. M, N the midpoint of ED, AE
4. H the orthocenter of the acutangle triangle ADE
5. 1, 2 the circumcircle of the triangle DHM, EHN
6. P, Q the second point of intersection of 1 and BM, 2 and CN
7. U, V the second points of intersection of 2 and MN, PQ.

Prove : UV is parallel to PM.

Sincerely
Jean-Louis
5 replies
jayme
Yesterday at 12:46 PM
jayme
an hour ago
Number theory
XAN4   1
N 2 hours ago by NTstrucker
Source: own
Prove that there exists infinitely many positive integers $x,y,z$ such that $x,y,z\ne1$ and $x^x\cdot y^y=z^z$.
1 reply
XAN4
Apr 20, 2025
NTstrucker
2 hours ago
R+ FE with arbitrary constant
CyclicISLscelesTrapezoid   25
N 2 hours ago by DeathIsAwe
Source: APMO 2023/4
Let $c>0$ be a given positive real and $\mathbb{R}_{>0}$ be the set of all positive reals. Find all functions $f \colon \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ such that \[f((c+1)x+f(y))=f(x+2y)+2cx \quad \textrm{for all } x,y \in \mathbb{R}_{>0}.\]
25 replies
CyclicISLscelesTrapezoid
Jul 5, 2023
DeathIsAwe
2 hours ago
Combo with cyclic sums
oVlad   1
N 3 hours ago by ja.
Source: Romania EGMO TST 2017 Day 1 P4
In $p{}$ of the vertices of the regular polygon $A_0A_1\ldots A_{2016}$ we write the number $1{}$ and in the remaining ones we write the number $-1.{}$ Let $x_i{}$ be the number written on the vertex $A_i{}.$ A vertex is good if \[x_i+x_{i+1}+\cdots+x_j>0\quad\text{and}\quad x_i+x_{i-1}+\cdots+x_k>0,\]for any integers $j{}$ and $k{}$ such that $k\leqslant i\leqslant j.$ Note that the indices are taken modulo $2017.$ Determine the greatest possible value of $p{}$ such that, regardless of numbering, there always exists a good vertex.
1 reply
oVlad
Yesterday at 1:41 PM
ja.
3 hours ago
Stronger inequality than an old result
KhuongTrang   20
N 3 hours ago by KhuongTrang
Source: own, inspired
Problem. Find the best constant $k$ satisfying $$(ab+bc+ca)\left[\frac{1}{(a+b)^{2}}+\frac{1}{(b+c)^{2}}+\frac{1}{(c+a)^{2}}\right]\ge \frac{9}{4}+k\cdot\frac{a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b)}{(a+b+c)^{3}}$$holds for all $a,b,c\ge 0: ab+bc+ca>0.$
20 replies
KhuongTrang
Aug 1, 2024
KhuongTrang
3 hours ago
Incircle of a triangle is tangent to (ABC)
amar_04   11
N 4 hours ago by Nari_Tom
Source: XVII Sharygin Correspondence Round P18
Let $ABC$ be a scalene triangle, $AM$ be the median through $A$, and $\omega$ be the incircle. Let $\omega$ touch $BC$ at point $T$ and segment $AT$ meet $\omega$ for the second time at point $S$. Let $\delta$ be the triangle formed by lines $AM$ and $BC$ and the tangent to $\omega$ at $S$. Prove that the incircle of triangle $\delta$ is tangent to the circumcircle of triangle $ABC$.
11 replies
amar_04
Mar 2, 2021
Nari_Tom
4 hours ago
Inspired by hlminh
sqing   1
N 4 hours ago by sqing
Source: Own
Let $ a,b,c $ be real numbers such that $ a^2+b^2+c^2=1. $ Prove that$$ |a-kb|+|kb-c|+|c-a|\leq 2\sqrt {k^2+1}$$Where $ k\geq 1.$
$$ |a-kb|+|kb-c|+|c-a|\leq 2\sqrt {2}$$Where $0< k\leq 1.$
1 reply
sqing
4 hours ago
sqing
4 hours ago
Inequality with n-gon sides
mihaig   3
N 4 hours ago by mihaig
Source: VL
If $a_1,a_2,\ldots, a_n~(n\geq3)$ are are the lengths of the sides of a $n-$gon such that
$$\sum_{i=1}^{n}{a_i}=1,$$then
$$(n-2)\left[\sum_{i=1}^{n}{\frac{a_i^2}{(1-a_i)^2}}-\frac n{(n-1)^2}\right]\geq(2n-1)\left(\sum_{i=1}^{n}{\frac{a_i}{1-a_i}}-\frac n{n-1}\right)^2.$$
When do we have equality?

(V. Cîrtoaje and L. Giugiuc, 2021)
3 replies
mihaig
Feb 25, 2022
mihaig
4 hours ago
a