Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
A sharp one with 3 var (3)
mihaig   4
N 2 hours ago by aaravdodhia
Source: Own
Let $a,b,c\geq0$ satisfying
$$\left(a+b+c-2\right)^2+8\leq3\left(ab+bc+ca\right).$$Prove
$$a^2+b^2+c^2+5abc\geq8.$$
4 replies
mihaig
Yesterday at 5:17 PM
aaravdodhia
2 hours ago
Cup of Combinatorics
M11100111001Y1R   1
N 3 hours ago by Davdav1232
Source: Iran TST 2025 Test 4 Problem 2
There are \( n \) cups labeled \( 1, 2, \dots, n \), where the \( i \)-th cup has capacity \( i \) liters. In total, there are \( n \) liters of water distributed among these cups such that each cup contains an integer amount of water. In each step, we may transfer water from one cup to another. The process continues until either the source cup becomes empty or the destination cup becomes full.

$a)$ Prove that from any configuration where each cup contains an integer amount of water, it is possible to reach a configuration in which each cup contains exactly 1 liter of water in at most \( \frac{4n}{3} \) steps.

$b)$ Prove that in at most \( \frac{5n}{3} \) steps, one can go from any configuration with integer water amounts to any other configuration with the same property.
1 reply
M11100111001Y1R
Yesterday at 7:24 AM
Davdav1232
3 hours ago
Bulgaria National Olympiad 1996
Jjesus   7
N 3 hours ago by reni_wee
Find all prime numbers $p,q$ for which $pq$ divides $(5^p-2^p)(5^q-2^q)$.
7 replies
Jjesus
Jun 10, 2020
reni_wee
3 hours ago
Can't be power of 2
shobber   31
N 3 hours ago by LeYohan
Source: APMO 1998
Show that for any positive integers $a$ and $b$, $(36a+b)(a+36b)$ cannot be a power of $2$.
31 replies
shobber
Mar 17, 2006
LeYohan
3 hours ago
Brilliant Problem
M11100111001Y1R   4
N 3 hours ago by IAmTheHazard
Source: Iran TST 2025 Test 3 Problem 3
Find all sequences \( (a_n) \) of natural numbers such that for every pair of natural numbers \( r \) and \( s \), the following inequality holds:
\[
\frac{1}{2} < \frac{\gcd(a_r, a_s)}{\gcd(r, s)} < 2
\]
4 replies
M11100111001Y1R
Yesterday at 7:28 AM
IAmTheHazard
3 hours ago
Own made functional equation
Primeniyazidayi   1
N 3 hours ago by Primeniyazidayi
Source: own(probably)
Find all functions $f:R \rightarrow R$ such that $xf(x^2+2f(y)-yf(x))=f(x)^3-f(y)(f(x^2)-2f(x))$ for all $x,y \in \mathbb{R}$
1 reply
Primeniyazidayi
May 26, 2025
Primeniyazidayi
3 hours ago
not fun equation
DottedCaculator   13
N 4 hours ago by Adywastaken
Source: USA TST 2024/6
Find all functions $f\colon\mathbb R\to\mathbb R$ such that for all real numbers $x$ and $y$,
\[f(xf(y))+f(y)=f(x+y)+f(xy).\]
Milan Haiman
13 replies
DottedCaculator
Jan 15, 2024
Adywastaken
4 hours ago
Serbian selection contest for the IMO 2025 - P6
OgnjenTesic   12
N 4 hours ago by atdaotlohbh
Source: Serbian selection contest for the IMO 2025
For an $n \times n$ table filled with natural numbers, we say it is a divisor table if:
- the numbers in the $i$-th row are exactly all the divisors of some natural number $r_i$,
- the numbers in the $j$-th column are exactly all the divisors of some natural number $c_j$,
- $r_i \ne r_j$ for every $i \ne j$.

A prime number $p$ is given. Determine the smallest natural number $n$, divisible by $p$, such that there exists an $n \times n$ divisor table, or prove that such $n$ does not exist.

Proposed by Pavle Martinović
12 replies
OgnjenTesic
May 22, 2025
atdaotlohbh
4 hours ago
Geometry with fix circle
falantrng   33
N 5 hours ago by zuat.e
Source: RMM 2018 Problem 6
Fix a circle $\Gamma$, a line $\ell$ to tangent $\Gamma$, and another circle $\Omega$ disjoint from $\ell$ such that $\Gamma$ and $\Omega$ lie on opposite sides of $\ell$. The tangents to $\Gamma$ from a variable point $X$ on $\Omega$ meet $\ell$ at $Y$ and $Z$. Prove that, as $X$ varies over $\Omega$, the circumcircle of $XYZ$ is tangent to two fixed circles.
33 replies
falantrng
Feb 25, 2018
zuat.e
5 hours ago
USAMO 2001 Problem 2
MithsApprentice   54
N 5 hours ago by lpieleanu
Let $ABC$ be a triangle and let $\omega$ be its incircle. Denote by $D_1$ and $E_1$ the points where $\omega$ is tangent to sides $BC$ and $AC$, respectively. Denote by $D_2$ and $E_2$ the points on sides $BC$ and $AC$, respectively, such that $CD_2=BD_1$ and $CE_2=AE_1$, and denote by $P$ the point of intersection of segments $AD_2$ and $BE_2$. Circle $\omega$ intersects segment $AD_2$ at two points, the closer of which to the vertex $A$ is denoted by $Q$. Prove that $AQ=D_2P$.
54 replies
MithsApprentice
Sep 30, 2005
lpieleanu
5 hours ago
a