We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
Equilateral triangle fun
navi_09220114   6
N an hour ago by wassupevery1
Source: Own. Malaysian IMO TST 2025 P8
Let $ABC$ be an equilateral triangle, and $P$ is a point on its incircle. Let $\omega_a$ be the circle tangent to $AB$ passing through $P$ and $A$. Similarly, let $\omega_b$ be the circle tangent to $BC$ passing through $P$ and $B$, and $\omega_c$ be the circle tangent to $CA$ passing through $P$ and $C$.

Prove that the circles $\omega_a$, $\omega_b$, $\omega_c$ has a common tangent line.

Proposed by Ivan Chan Kai Chin
6 replies
navi_09220114
Today at 1:05 PM
wassupevery1
an hour ago
circle geometry solvable by many ways
Dr.Poe98   4
N an hour ago by americancheeseburger4281
Source: Brazil Cono Sur TST 2024 - T3/P4
Let $ABC$ be a triangle, $O$ its circumcenter and $\Gamma$ its circumcircle. Let $E$ and $F$ be points on $AB$ and $AC$, respectively, such that $O$ is the midpoint of $EF$. Let $A'=AO\cap \Gamma$, with $A'\ne A$. Finally, let $P$ be the point on line $EF$ such that $A'P\perp EF$. Prove that the lines $EF,BC$ and the tangent to $\Gamma$ at $A'$ are concurrent and that $\angle BPA' = \angle CPA'$.
4 replies
Dr.Poe98
Oct 21, 2024
americancheeseburger4281
an hour ago
Dealing with Multiple Circles
Wildabandon   4
N an hour ago by Double07
Source: PEMNAS Brawijaya University Senior High School Semifinal 2023 P4
A non-isosceles triangle $ABC$ and $\ell$ is tangent to the circumcircle of triangle $ABC$ through point $C$. Points $D$ and $E$ are the midpoints of segments $BC$ and $CA$ respectively, then line $AD$ and line $BE$ intersect $\ell$ at points $A_1$ and $B_1$ respectively. Line $AB_1$ and line $BA_1$ intersect the circumcircle of triangle $ABC$ at points $X$ and $Y$ respectively. Prove that $X$, $Y$, $D$ and $E$ concyclic.
4 replies
Wildabandon
Dec 1, 2024
Double07
an hour ago
Thanks u!
Ruji2018252   1
N an hour ago by pco
Jqkrjfđrfffffff
1 reply
Ruji2018252
2 hours ago
pco
an hour ago
funny title
nguyenvana   1
N an hour ago by pco
Source: no from book
Find all the functions f: R+ to R+ which satisfy the functional equation:
f(2f(x)+f(y)+xy)=xy+2x+y (x,y R+)
1 reply
nguyenvana
3 hours ago
pco
an hour ago
subsets of subset has same sum
61plus   3
N an hour ago by sttsmet
Source: 2015 China TST 2 Day 2 Q2
Set $S$ to be a subset of size $68$ of $\{1,2,...,2015\}$. Prove that there exist $3$ pairwise disjoint, non-empty subsets $A,B,C$ such that $|A|=|B|=|C|$ and $\sum_{a\in A}a=\sum_{b\in B}b=\sum_{c\in C}c$
3 replies
61plus
Mar 19, 2015
sttsmet
an hour ago
Dear Sqing: So Many Inequalities...
hashtagmath   23
N an hour ago by MTA_2024
I have noticed thousands upon thousands of inequalities that you have posted to HSO and was wondering where you get the inspiration, imagination, and even the validation that such inequalities are true? Also, what do you find particularly appealing and important about specifically inequalities rather than other branches of mathematics? Thank you :)
23 replies
hashtagmath
Oct 30, 2024
MTA_2024
an hour ago
(ab)^2 + (bc)^2 + (ca)^2
GorgonMathDota   13
N an hour ago by ektorasmiliotis
Source: Shortlist BMO 2019, A5
Let $a,b,c$ be positive real numbers, such that $(ab)^2 + (bc)^2 + (ca)^2 = 3$. Prove that
\[ (a^2 - a + 1)(b^2 - b + 1)(c^2 - c + 1) \ge 1. \]
Proposed by Florin Stanescu (wer), România
13 replies
GorgonMathDota
Nov 7, 2020
ektorasmiliotis
an hour ago
weird combinatorics/algebra
Dr.Poe98   1
N 2 hours ago by americancheeseburger4281
Source: Brazil Cono Sur TST 2024 - T3/P2
For each natural number $n\ge3$, let $m(n)$ be the maximum number of points inside or on the sides of a regular $n$-agon of side $1$ such that the distance between any two points is greater than $1$. Prove that $m(n)\ge n$ for $n>6$.
1 reply
Dr.Poe98
Oct 21, 2024
americancheeseburger4281
2 hours ago
A nice problem
hanzo.ei   0
2 hours ago

Given a nonzero real number \(a\) and a polynomial \(P(x)\) with real coefficients of degree \(n\) (\(n > 1\)) such that \(P(x)\) has no real roots. Prove that the polynomial
\[
Q(x) \;=\; P(x) \;+\; a\,P'(x) \;+\; a^2\,P''(x) \;+\; \dots \;+\; a^n\,P^{(n)}(x)
\]has no real roots.
0 replies
hanzo.ei
2 hours ago
0 replies
Inequalities
sqing   3
N 3 hours ago by sqing
Let $ a,b> 0$ and $ a+b=1 . $ Prove that
$$ \frac{1}{a}+\frac{1}{b}\geq \frac{4+\frac{k}{4096}}{1+ ka^7b^7}$$Where $\frac{8192}{3}\geq  k>0 .$
$$ \frac{1}{a}+\frac{1}{b}\geq \frac{\frac{14}{3}}{1+ \frac{8192}{3}a^7b^7}$$
3 replies
sqing
4 hours ago
sqing
3 hours ago
Inequalities
sqing   0
3 hours ago
Let $ a,b,c\geq 0 $ and $a+b+c=1$. Prove that$$a^3b+b^3c+c^3a+\frac{473}{256}abc\le\frac{27}{256}$$Equality holds when $ a=b=c=\frac{1}{3} $ or $ a=0,b=\frac{3}{4},c=\frac{1}{4} $ or $ a=\frac{1}{4} ,b=0,c=\frac{3}{4} $
or $ a=\frac{3}{4} ,b=\frac{1}{4},c=0. $
0 replies
sqing
3 hours ago
0 replies
Inequalities
sqing   7
N Mar 19, 2025 by sqing
Let $a,b,c\ge \frac{1}{2}$ and $\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\le 1. $ Prove that
$$a+b+c\geq 2$$Let $a,b,c\ge \frac{1}{2}$ and $ \left(a+\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(a+\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\le \frac{9}{2}. $ Prove that
$$a^2+b^2+c^2\geq 1$$Let $a,b\ge \frac{1}{2}$ and $ \left( \frac{1}{a}-\frac{1}{b}+2\right)\left( \frac{1}{b}-\frac{1}{a}+2\right) \le   \frac{20}{9}. $ Prove that
$$ a+b\geq 2$$Let $a,b\ge \frac{1}{2}$ and $a^2+b^2=1. $ Prove that
$$\left(\frac{2}{a}+\frac{1}{b}-1\right)\left(\frac{2}{a}-\frac{1}{b}+1\right)\ge \frac{13}{3}$$
7 replies
sqing
Mar 15, 2025
sqing
Mar 19, 2025
Inequalities
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41172 posts
#1
Y by
Let $a,b,c\ge \frac{1}{2}$ and $\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\le 1. $ Prove that
$$a+b+c\geq 2$$Let $a,b,c\ge \frac{1}{2}$ and $ \left(a+\frac{1}{a}+\frac{1}{b}-\frac{1}{c}\right)\left(a+\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\le \frac{9}{2}. $ Prove that
$$a^2+b^2+c^2\geq 1$$Let $a,b\ge \frac{1}{2}$ and $ \left( \frac{1}{a}-\frac{1}{b}+2\right)\left( \frac{1}{b}-\frac{1}{a}+2\right) \le   \frac{20}{9}. $ Prove that
$$ a+b\geq 2$$Let $a,b\ge \frac{1}{2}$ and $a^2+b^2=1. $ Prove that
$$\left(\frac{2}{a}+\frac{1}{b}-1\right)\left(\frac{2}{a}-\frac{1}{b}+1\right)\ge \frac{13}{3}$$
This post has been edited 2 times. Last edited by sqing, Mar 15, 2025, 1:17 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41172 posts
#2
Y by
Let $ a,b,c $ be real numbers such that $    \frac{3}{a^2+6}+\frac{2}{b^2+4}+\frac{3}{c^2+6}=1. $ Prove that$$ab+bc+2ca\leq 13$$$$ab+bc+3ca\leq \frac{56}{3}$$Let $ a,b,c $ be real numbers such that $  \frac{3}{a^2+6}+\frac{4}{b^2+8}+\frac{3}{c^2+6}=1. $ Prove that$$ab+bc+2ca\leq 14$$$$ab+bc+4ca\leq 25$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DAVROS
1631 posts
#3
Y by
sqing wrote:
Let $a,b\ge \frac{1}{2}$ and $ \left( \frac{1}{a}-\frac{1}{b}+2\right)\left( \frac{1}{b}-\frac{1}{a}+2\right) \le   \frac{20}{9}. $ Prove that $ a+b\geq 2$
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DAVROS
1631 posts
#4
Y by
sqing wrote:
Let $a,b\ge \frac{1}{2}$ and $a^2+b^2=1. $ Prove that $\left(\frac{2}{a}+\frac{1}{b}-1\right)\left(\frac{2}{a}-\frac{1}{b}+1\right)\ge \frac{13}{3}$

solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41172 posts
#5
Y by
Very very nice.Thank DAVROS.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41172 posts
#6
Y by
Let $ a,b,c  $ be reals such that $  a^2+b^2 +ab+bc+ca=3. $ Prove that
$$   (a+ b) (c-1)   \leq\frac{10}{3}$$$$   (a+ b) (c-3)   \leq6$$$$   (a+ b) (c-\frac{1}{2})   \leq\frac{37}{12}$$
This post has been edited 1 time. Last edited by sqing, Mar 18, 2025, 1:58 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
DAVROS
1631 posts
#7
Y by
sqing wrote:
Let $ a,b,c  $ be reals such that $  a^2+b^2 +ab+bc+ca=3. $ Prove that $   (a+ b) (c-\frac{1}{2})   \leq\frac{37}{12}$
solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41172 posts
#8
Y by
Very very nice.Thank DAVROS.
Z K Y
N Quick Reply
G
H
=
a