Plan ahead for the next school year. Schedule your class today!

Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
Contests & Programs AMC and other contests, summer programs, etc.
AMC and other contests, summer programs, etc.
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
k a July Highlights and 2025 AoPS Online Class Information
jwelsh   0
Jul 1, 2025
We are halfway through summer, so be sure to carve out some time to keep your skills sharp and explore challenging topics at AoPS Online and our AoPS Academies (including the Virtual Campus)!

[list][*]Over 60 summer classes are starting at the Virtual Campus on July 7th - check out the math and language arts options for middle through high school levels.
[*]At AoPS Online, we have accelerated sections where you can complete a course in half the time by meeting twice/week instead of once/week, starting on July 8th:
[list][*]MATHCOUNTS/AMC 8 Basics
[*]MATHCOUNTS/AMC 8 Advanced
[*]AMC Problem Series[/list]
[*]Plus, AoPS Online has a special seminar July 14 - 17 that is outside the standard fare: Paradoxes and Infinity
[*]We are expanding our in-person AoPS Academy locations - are you looking for a strong community of problem solvers, exemplary instruction, and math and language arts options? Look to see if we have a location near you and enroll in summer camps or academic year classes today! New locations include campuses in California, Georgia, New York, Illinois, and Oregon and more coming soon![/list]

MOP (Math Olympiad Summer Program) just ended and the IMO (International Mathematical Olympiad) is right around the corner! This year’s IMO will be held in Australia, July 10th - 20th. Congratulations to all the MOP students for reaching this incredible level and best of luck to all selected to represent their countries at this year’s IMO! Did you know that, in the last 10 years, 59 USA International Math Olympiad team members have medaled and have taken over 360 AoPS Online courses. Take advantage of our Worldwide Online Olympiad Training (WOOT) courses
and train with the best! Please note that early bird pricing ends August 19th!
Are you tired of the heat and thinking about Fall? You can plan your Fall schedule now with classes at either AoPS Online, AoPS Academy Virtual Campus, or one of our AoPS Academies around the US.

Our full course list for upcoming classes is below:
All classes start 7:30pm ET/4:30pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Wednesday, Jul 16 - Oct 29
Sunday, Aug 17 - Dec 14
Tuesday, Aug 26 - Dec 16
Friday, Sep 5 - Jan 16
Monday, Sep 8 - Jan 12
Tuesday, Sep 16 - Jan 20 (4:30 - 5:45 pm ET/1:30 - 2:45 pm PT)
Sunday, Sep 21 - Jan 25
Thursday, Sep 25 - Jan 29
Wednesday, Oct 22 - Feb 25
Tuesday, Nov 4 - Mar 10
Friday, Dec 12 - Apr 10

Prealgebra 2 Self-Paced

Prealgebra 2
Friday, Jul 25 - Nov 21
Sunday, Aug 17 - Dec 14
Tuesday, Sep 9 - Jan 13
Thursday, Sep 25 - Jan 29
Sunday, Oct 19 - Feb 22
Monday, Oct 27 - Mar 2
Wednesday, Nov 12 - Mar 18

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Tuesday, Jul 15 - Oct 28
Sunday, Aug 17 - Dec 14
Wednesday, Aug 27 - Dec 17
Friday, Sep 5 - Jan 16
Thursday, Sep 11 - Jan 15
Sunday, Sep 28 - Feb 1
Monday, Oct 6 - Feb 9
Tuesday, Oct 21 - Feb 24
Sunday, Nov 9 - Mar 15
Friday, Dec 5 - Apr 3

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Jul 2 - Sep 17
Sunday, Jul 27 - Oct 19
Monday, Aug 11 - Nov 3
Wednesday, Sep 3 - Nov 19
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Friday, Oct 3 - Jan 16
Sunday, Oct 19 - Jan 25
Tuesday, Nov 4 - Feb 10
Sunday, Dec 7 - Mar 8

Introduction to Number Theory
Tuesday, Jul 15 - Sep 30
Wednesday, Aug 13 - Oct 29
Friday, Sep 12 - Dec 12
Sunday, Oct 26 - Feb 1
Monday, Dec 1 - Mar 2

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Friday, Jul 18 - Nov 14
Thursday, Aug 7 - Nov 20
Monday, Aug 18 - Dec 15
Sunday, Sep 7 - Jan 11
Thursday, Sep 11 - Jan 15
Wednesday, Sep 24 - Jan 28
Sunday, Oct 26 - Mar 1
Tuesday, Nov 4 - Mar 10
Monday, Dec 1 - Mar 30

Introduction to Geometry
Monday, Jul 14 - Jan 19
Wednesday, Aug 13 - Feb 11
Tuesday, Aug 26 - Feb 24
Sunday, Sep 7 - Mar 8
Thursday, Sep 11 - Mar 12
Wednesday, Sep 24 - Mar 25
Sunday, Oct 26 - Apr 26
Monday, Nov 3 - May 4
Friday, Dec 5 - May 29

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Sat & Sun, Sep 13 - Sep 14 (1:00 - 4:00 PM PT/4:00 - 7:00 PM ET)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
Friday, Aug 8 - Feb 20
Tuesday, Aug 26 - Feb 24
Sunday, Sep 28 - Mar 29
Wednesday, Oct 8 - Mar 8
Sunday, Nov 16 - May 17
Thursday, Dec 11 - Jun 4

Intermediate Counting & Probability
Sunday, Sep 28 - Feb 15
Tuesday, Nov 4 - Mar 24

Intermediate Number Theory
Wednesday, Sep 24 - Dec 17

Precalculus
Wednesday, Aug 6 - Jan 21
Tuesday, Sep 9 - Feb 24
Sunday, Sep 21 - Mar 8
Monday, Oct 20 - Apr 6
Sunday, Dec 14 - May 31

Advanced: Grades 9-12

Calculus
Sunday, Sep 7 - Mar 15
Wednesday, Sep 24 - Apr 1
Friday, Nov 14 - May 22

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Wednesday, Sep 3 - Nov 19
Tuesday, Sep 16 - Dec 9
Sunday, Sep 21 - Dec 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Oct 6 - Jan 12
Thursday, Oct 16 - Jan 22
Tues, Thurs & Sun, Dec 9 - Jan 18 (meets three times a week!)

MATHCOUNTS/AMC 8 Advanced
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 17 - Nov 9
Tuesday, Aug 26 - Nov 11
Thursday, Sep 4 - Nov 20
Friday, Sep 12 - Dec 12
Monday, Sep 15 - Dec 8
Sunday, Oct 5 - Jan 11
Tues, Thurs & Sun, Dec 2 - Jan 11 (meets three times a week!)
Mon, Wed & Fri, Dec 8 - Jan 16 (meets three times a week!)

AMC 10 Problem Series
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
Sunday, Aug 10 - Nov 2
Thursday, Aug 14 - Oct 30
Tuesday, Aug 19 - Nov 4
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Mon, Wed & Fri, Oct 6 - Nov 3 (meets three times a week!)
Tue, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 10 Final Fives
Friday, Aug 15 - Sep 12
Sunday, Sep 7 - Sep 28
Tuesday, Sep 9 - Sep 30
Monday, Sep 22 - Oct 13
Sunday, Sep 28 - Oct 19 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, Oct 8 - Oct 29
Thursday, Oct 9 - Oct 30

AMC 12 Problem Series
Wednesday, Aug 6 - Oct 22
Sunday, Aug 10 - Nov 2
Monday, Aug 18 - Nov 10
Mon & Wed, Sep 15 - Oct 22 (meets twice a week!)
Tues, Thurs & Sun, Oct 7 - Nov 2 (meets three times a week!)

AMC 12 Final Fives
Thursday, Sep 4 - Sep 25
Sunday, Sep 28 - Oct 19
Tuesday, Oct 7 - Oct 28

AIME Problem Series A
Thursday, Oct 23 - Jan 29

AIME Problem Series B
Tuesday, Sep 2 - Nov 18

F=ma Problem Series
Tuesday, Sep 16 - Dec 9
Friday, Oct 17 - Jan 30

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT


Programming

Introduction to Programming with Python
Thursday, Aug 14 - Oct 30
Sunday, Sep 7 - Nov 23
Tuesday, Dec 2 - Mar 3

Intermediate Programming with Python
Friday, Oct 3 - Jan 16

USACO Bronze Problem Series
Wednesday, Sep 3 - Dec 3
Thursday, Oct 30 - Feb 5
Tuesday, Dec 2 - Mar 3

Physics

Introduction to Physics
Tuesday, Sep 2 - Nov 18
Sunday, Oct 5 - Jan 11
Wednesday, Dec 10 - Mar 11

Physics 1: Mechanics
Sunday, Sep 21 - Mar 22
Sunday, Oct 26 - Apr 26
0 replies
jwelsh
Jul 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Qualifying for USAJMO
Youlose.com   4
N 24 minutes ago by giratina3
So basically I'm going to be in 9th grade in the fall, I'm averaging 102-108 on practice AMC 10s and averaging 7-8 on AIMEs so I'm wondering what I still need to do to bump AMC 10 like 25 points and AIME like 2 points. I've done all the intros, about to start intermediates, and also going to do some Awesome math books. I'm trying to find some good books for geometry(my weakest subject) as well as other books that are in between AoPS Intros and Intermediates as well as some that are more advanced than the intermediates. Specifically, I'd like an advanced NT book(my strongest subject), a C&P/Combinatorics book that's between Intro and intermediate. Also generally AIME books as well.
4 replies
Youlose.com
Jul 11, 2025
giratina3
24 minutes ago
Italian WinterCamps test07 Problem5
mattilgale   58
N an hour ago by lpieleanu
Source: ISL 2006, A1, AIMO 2007, TST 1, P1
A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula
\[ a_{i + 1} = \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0;
\]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large.

Proposed by Harmel Nestra, Estionia
58 replies
mattilgale
Jan 29, 2007
lpieleanu
an hour ago
functional equation with two variables
Sayan   6
N an hour ago by ParthivCalculus
Source: ISI(BS) 2005 #3
Let $f$ be a function defined on $\{(i,j): i,j \in \mathbb{N}\}$ satisfying

(i) $f(i,i+1)=\frac{1}{3}$ for all $i$

(ii) $f(i,j)=f(i,k)+f(k,j)-2f(i,k)f(k,j)$ for all $k$ such that $i <k<j$.

Find the value of $f(1,100)$.
6 replies
Sayan
May 20, 2012
ParthivCalculus
an hour ago
sorting sums (a_i +a_j) in ascending order, arithmetic progression when?
parmenides51   1
N an hour ago by ririgggg
Source: Dutch IMO TST 2016 day 3 p2
For distinct real numbers $a_1,a_2,...,a_n$, we calculate the $\frac{n(n-1)}{2}$ sums $a_i +a_j$ with $1 \le i < j \le  n$, and sort them in ascending order. Find all integers $n \ge  3$ for which there exist $a_1,a_2,...,a_n$, for which this sequence of $\frac{n(n-1)}{2}$ sums form an arithmetic progression (i.e. the dierence between consecutive terms is constant).
1 reply
parmenides51
Aug 30, 2019
ririgggg
an hour ago
IMO 2011 Problem 5
orl   87
N 2 hours ago by Jupiterballs
Let $f$ be a function from the set of integers to the set of positive integers. Suppose that, for any two integers $m$ and $n$, the difference $f(m) - f(n)$ is divisible by $f(m- n)$. Prove that, for all integers $m$ and $n$ with $f(m) \leq f(n)$, the number $f(n)$ is divisible by $f(m)$.

Proposed by Mahyar Sefidgaran, Iran
87 replies
orl
Jul 19, 2011
Jupiterballs
2 hours ago
Numbers on cards (again!)
popcorn1   83
N 2 hours ago by eg4334
Source: IMO 2021 P1
Let $n \geqslant 100$ be an integer. Ivan writes the numbers $n, n+1, \ldots, 2 n$ each on different cards. He then shuffles these $n+1$ cards, and divides them into two piles. Prove that at least one of the piles contains two cards such that the sum of their numbers is a perfect square.
83 replies
popcorn1
Jul 20, 2021
eg4334
2 hours ago
(a^n + b^n + 1) is divisible by d for all positive integers n
parmenides51   3
N 2 hours ago by ririgggg
Source: Dutch IMO TST 2016 p2
Determine all pairs $(a, b)$ of integers having the following property:
there is an integer $d \ge  2$ such that $a^n + b^n + 1$ is divisible by $d$ for all positive integers $n$.
3 replies
parmenides51
Aug 30, 2019
ririgggg
2 hours ago
An Inequality
Butterfly   0
2 hours ago

Let $x\ge y\ge z\ge 0$ and $x^2+y^2+z^2+xyz=4.$ Prove $x+y+z+(\sqrt{x}-\sqrt{z})^2\ge 3.$
0 replies
Butterfly
2 hours ago
0 replies
cubefree divisibility
DottedCaculator   64
N 2 hours ago by eg4334
Source: 2021 ISL N1
Find all positive integers $n\geq1$ such that there exists a pair $(a,b)$ of positive integers, such that $a^2+b+3$ is not divisible by the cube of any prime, and $$n=\frac{ab+3b+8}{a^2+b+3}.$$
64 replies
DottedCaculator
Jul 12, 2022
eg4334
2 hours ago
AOPS MO Introduce
MathMaxGreat   78
N 2 hours ago by Jackson0423
$AOPS MO$

Problems: post it as a private message to me or @jerryZYang, please post it in $LATEX$ and have answers

6 Problems for two rounds, easier than $IMO$

If you want to do the problems or be interested, reply ’+1’
Want to post a problem reply’+2’ and message me
Want to be in the problem selection committee, reply’+3’
78 replies
MathMaxGreat
Yesterday at 1:04 AM
Jackson0423
2 hours ago
Collinearity in Isosceles Trapezoid
utkarshgupta   16
N 2 hours ago by Rayvhs
Source: All Russian Olympiad 2017 Grade 9 Problem 2
$ABCD$ is an isosceles trapezoid with $BC || AD$. A circle $\omega$ passing through $B$ and $C$ intersects the side $AB$ and the diagonal $BD$ at points $X$ and $Y$ respectively. Tangent to $\omega$ at $C$ intersects the line $AD$ at $Z$. Prove that the points $X$, $Y$, and $Z$ are collinear.
16 replies
utkarshgupta
Jul 5, 2017
Rayvhs
2 hours ago
Subsets with Consecutive Numbers
worthawholebean   19
N 4 hours ago by SomeonecoolLovesMaths
Source: AIME 2009II Problem 6
Let $ m$ be the number of five-element subsets that can be chosen from the set of the first $ 14$ natural numbers so that at least two of the five numbers are consecutive. Find the remainder when $ m$ is divided by $ 1000$.
19 replies
worthawholebean
Apr 2, 2009
SomeonecoolLovesMaths
4 hours ago
Green and red marbles [2011.II.7]
#H34N1   11
N 4 hours ago by SomeonecoolLovesMaths
Ed has five identical green marbles and a large supply of identical red marbles. He arranges the green marbles and some of the red marbles in a row and finds that the number of marbles whose right hand neighbor is the same color as themselves equals the number of marbles whose right hand neighbor is the other color. An example of such an arrangement is GGRRRGGRG. Let $m$ be the maximum number of red marbles for which Ed can make such an arrangement, and let $N$ be the number of ways in which Ed can arrange the $m+5$ marbles to satisfy the requirement. Find the remainder when $N$ is divided by 1000.
11 replies
#H34N1
Mar 31, 2011
SomeonecoolLovesMaths
4 hours ago
how long to study for AMC
AdrienMarieLegendre   9
N Today at 7:16 AM by ChromeRaptor777
This might not be the right question to ask, but I want to know for reference. I will be taking the AMC 10 in november, and my current score on practice tests is 50. Around how long do you think I should study per day, and how much time did you put into studying daily to make AIME?
9 replies
AdrienMarieLegendre
Yesterday at 11:27 PM
ChromeRaptor777
Today at 7:16 AM
Question about problem
Spacepandamath13   3
N Jun 6, 2025 by nxchman
Source: AMC10
Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number?

$\textbf{(A)} 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 42$

Most people jsut subtract the inner square 3*3 but why are there no semicircle areas in the empty spot in the middle?
3 replies
Spacepandamath13
Jun 6, 2025
nxchman
Jun 6, 2025
Question about problem
G H J
G H BBookmark kLocked kLocked NReply
Source: AMC10
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Spacepandamath13
454 posts
#1
Y by
Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number?

$\textbf{(A)} 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 42$

Most people jsut subtract the inner square 3*3 but why are there no semicircle areas in the empty spot in the middle?
This post has been edited 1 time. Last edited by Spacepandamath13, Jun 6, 2025, 2:08 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nxchman
51 posts
#2
Y by
I think because a straight line boundary would cover the most amount of area if you look 1 km in all directions and in all positions.
Attachments:
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Soupboy0
615 posts
#3
Y by
Spacepandamath13 wrote:
Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number?

$\textbf{(A)} 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 42$

Most people jsut subtract the inner square 3*3 but why are there no semicircle areas in the empty spot in the middle?

wait what i just did this problem on alcumus
what a coincidence
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nxchman
51 posts
#4
Y by
Soupboy0 wrote:
Spacepandamath13 wrote:
Charlyn walks completely around the boundary of a square whose sides are each $5$ km long. From any point on her path she can see exactly $1$ km horizontally in all directions. What is the area of the region consisting of all points Charlyn can see during her walk, expressed in square kilometers and rounded to the nearest whole number?

$\textbf{(A)} 24 \qquad\textbf{(B)}\ 27 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 42$

Most people jsut subtract the inner square 3*3 but why are there no semicircle areas in the empty spot in the middle?

wait what i just did this problem on alcumus
what a coincidence

I did this problem 2 days ago lmao :rotfl:
Z K Y
N Quick Reply
G
H
=
a