Y by kk108, Adventure10, Mango247, aidan0626, Blue_banana4
Let
,
, and
be positive integers. Prove that ![\[ \sum_{i = 1}^n \min\left(\left\lfloor \frac{x}{i} \right\rfloor, m \right) = \sum_{i = 1}^m \min\left(\left\lfloor \frac{x}{i} \right\rfloor, n \right). \]](//latex.artofproblemsolving.com/b/7/a/b7aebfe11f646d604d2e8cb9d5bd70ec796949e8.png)
Proposed by Yang Liu



![\[ \sum_{i = 1}^n \min\left(\left\lfloor \frac{x}{i} \right\rfloor, m \right) = \sum_{i = 1}^m \min\left(\left\lfloor \frac{x}{i} \right\rfloor, n \right). \]](http://latex.artofproblemsolving.com/b/7/a/b7aebfe11f646d604d2e8cb9d5bd70ec796949e8.png)
Proposed by Yang Liu
Stay ahead of learning milestones! Enroll in a class over the summer!
Something appears to not have loaded correctly.