Y by Wizard_32, nguyendangkhoa17112003, Adventure10
Let
be a triangle such that
and
be its circumcircle. a tangent from
to
intersect
at
.
is a circle passing throw
that is tangent to
at
. Let
.
is a point on
such that
is tangent to
(
aren't in one side of
). Let
be the midpoint of arc
of
(not containing
). Prove that
is a cyclic quadrilateral.
![[asy]
import graph; size(15.424606256655986cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7.905629294221492, xmax = 11.618976962434495, ymin = -5.154837585051625, ymax = 4.0091473316396895; /* image dimensions */
pen uuuuuu = rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666);
/* draw figures */
draw(circle((1.4210145017438194,0.18096629151696939), 2.581514123077079));
draw(circle((1.4210145017438194,-1.3302878964546825), 2.8984706754484924));
draw(circle((-0.7076932767793396,-0.4161825262831505), 2.9101722408015513), linetype("4 4") + red);
draw((3.996177869179178,0.)--(-3.839514259733819,0.));
draw((3.996177869179178,0.)--(0.07833180472267817,2.385828723227042));
draw((0.07833180472267817,2.385828723227042)--(-1.154148865691539,0.));
draw((-3.839514259733819,0.)--(-0.6807342461448075,-3.3262298939043657));
draw((0.07833180472267817,2.385828723227042)--(-3.839514259733819,0.));
/* dots and labels */
dot((3.996177869179178,0.),blue);
label("$B$", (4.040279615036859,0.10218054796102663), NE * labelscalefactor,blue);
dot((-1.154148865691539,0.),blue);
label("$C$", (-1.3803811057738653,-0.14328333373606214), NE * labelscalefactor,blue);
dot((1.4210145017438194,1.5681827789938092),linewidth(4.pt));
label("$F$", (1.4629088572174203,1.6465574703052102), NE * labelscalefactor);
dot((0.07833180472267817,2.385828723227042),linewidth(3.pt) + blue);
label("$A$", (-0.04055741817725232,2.5568193649319144), NE * labelscalefactor,blue);
dot((-3.839514259733819,0.),linewidth(3.pt));
label("$E$", (-4.049800819229713,-0.06146203983703255), NE * labelscalefactor);
dot((1.4210145017438194,-2.40054783156011),linewidth(4.pt) + uuuuuu);
label("$M$", (1.4117705485305265,-2.6490604593938434), NE * labelscalefactor,uuuuuu);
dot((-0.6807342461448075,-3.3262298939043657),linewidth(4.pt));
label("$K$", (-0.7871767250058992,-3.5490946922831688), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](//latex.artofproblemsolving.com/d/9/8/d98b1124917eb3db27a62547cba45f0fe461605a.png)























![[asy]
import graph; size(15.424606256655986cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7.905629294221492, xmax = 11.618976962434495, ymin = -5.154837585051625, ymax = 4.0091473316396895; /* image dimensions */
pen uuuuuu = rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666);
/* draw figures */
draw(circle((1.4210145017438194,0.18096629151696939), 2.581514123077079));
draw(circle((1.4210145017438194,-1.3302878964546825), 2.8984706754484924));
draw(circle((-0.7076932767793396,-0.4161825262831505), 2.9101722408015513), linetype("4 4") + red);
draw((3.996177869179178,0.)--(-3.839514259733819,0.));
draw((3.996177869179178,0.)--(0.07833180472267817,2.385828723227042));
draw((0.07833180472267817,2.385828723227042)--(-1.154148865691539,0.));
draw((-3.839514259733819,0.)--(-0.6807342461448075,-3.3262298939043657));
draw((0.07833180472267817,2.385828723227042)--(-3.839514259733819,0.));
/* dots and labels */
dot((3.996177869179178,0.),blue);
label("$B$", (4.040279615036859,0.10218054796102663), NE * labelscalefactor,blue);
dot((-1.154148865691539,0.),blue);
label("$C$", (-1.3803811057738653,-0.14328333373606214), NE * labelscalefactor,blue);
dot((1.4210145017438194,1.5681827789938092),linewidth(4.pt));
label("$F$", (1.4629088572174203,1.6465574703052102), NE * labelscalefactor);
dot((0.07833180472267817,2.385828723227042),linewidth(3.pt) + blue);
label("$A$", (-0.04055741817725232,2.5568193649319144), NE * labelscalefactor,blue);
dot((-3.839514259733819,0.),linewidth(3.pt));
label("$E$", (-4.049800819229713,-0.06146203983703255), NE * labelscalefactor);
dot((1.4210145017438194,-2.40054783156011),linewidth(4.pt) + uuuuuu);
label("$M$", (1.4117705485305265,-2.6490604593938434), NE * labelscalefactor,uuuuuu);
dot((-0.6807342461448075,-3.3262298939043657),linewidth(4.pt));
label("$K$", (-0.7871767250058992,-3.5490946922831688), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]](http://latex.artofproblemsolving.com/d/9/8/d98b1124917eb3db27a62547cba45f0fe461605a.png)