We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
Position vectors of complex numbers
MetaphysicalWukong   4
N 11 minutes ago by MetaphysicalWukong
Source: Dengyan Jin, Pinyao Cong
I cant even understand the question. Can someone help me?
4 replies
MetaphysicalWukong
an hour ago
MetaphysicalWukong
11 minutes ago
Inspired by my own results
sqing   2
N 22 minutes ago by sqing
Source: Own
Let $ a,b\geq 0 $ and $a^2+b^2+ab+a+b=5. $ Prove that
$$ \frac{11-\sqrt {21}}{2}\geq a^2+b^2+3ab(a+ b-\frac95) \geq \frac{13}{5}$$$$ \frac{11-\sqrt {21}}{2}\geq a^2+b^2+3ab(a+ b-2) \geq2$$$$5\geq a^2+b^2+3ab(a+ b-1 ) \geq \frac{11-\sqrt {21}}{2}$$$$ \frac{769}{200}\geq a^2+b^2+3ab(a+ b-1.385) \geq \frac{11-\sqrt {21}}{2}$$
2 replies
1 viewing
sqing
Friday at 2:46 PM
sqing
22 minutes ago
Hard number theory
Hip1zzzil   9
N 33 minutes ago by segment
Source: FKMO 2025 P6
Two positive integers $a,b$ satisfy the following two conditions:

1) $m^{2}|ab \Rightarrow m=1$
2) Integers $x,y,z,w$ exist such that $ax^{2}+by^{2}=z^{2}+w^{2}, w^{2}+z^{2}>0$.

Prove that for any positive integer $n$,
Positive integers $x,y,z,w$ exist such that $ax^{2}+by^{2}+n=z^{2}+w^{2}$.
9 replies
+2 w
Hip1zzzil
3 hours ago
segment
33 minutes ago
x+y+z=0 inequality
KhuongTrang   2
N 34 minutes ago by dangerousliri
Source: own
Problem. Let $x,y,z\in\mathbb{R}: x+y+z=0$ then prove $$\color{blue}{\frac{x+1}{x^2+8}+\frac{y+1}{y^2+8}+\frac{z+1}{z^2+8}\le \frac{3}{8}.}$$Equality holds iff $(x,y,z)\sim(0,0,0)$ or $(x,y,z)\sim(2,2,-4).$
2 replies
KhuongTrang
2 hours ago
dangerousliri
34 minutes ago
No more topics!
Circumcircles intersect on AO
talkon   21
N Mar 26, 2025 by bin_sherlo
Source: InfinityDots MO Problem 3
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
21 replies
talkon
Mar 28, 2017
bin_sherlo
Mar 26, 2025
Circumcircles intersect on AO
G H J
G H BBookmark kLocked kLocked NReply
Source: InfinityDots MO Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
talkon
276 posts
#1 • 12 Y
Y by artsolver, jonyj1005, Ankoganit, aopser123, anantmudgal09, monkey8, don2001, GeoMetrix, ApraTrip, Adventure10, Mango247, Funcshun840
Let $\triangle ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. The line through $O$ parallel to $BC$ intersect $AB$ at $D$ and $AC$ at $E$. $X$ is the midpoint of $AH$. Prove that the circumcircles of $\triangle BDX$ and $\triangle CEX$ intersect again at a point on line $AO$.

Proposed by TacH
This post has been edited 1 time. Last edited by talkon, Jan 3, 2019, 6:16 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1979 posts
#2 • 5 Y
Y by artsolver, mihajlon, don2001, Adventure10, MS_asdfgzxcvb
diagram

solution

Comment
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rkm0959
1721 posts
#3 • 5 Y
Y by anantmudgal09, don2001, fuzimiao2013, Adventure10, Mango247
Let $AP, BQ, CR$ be the altitude from $A, B, C$, wrt $\triangle ABC$. Let $M$ be the midpoint of $BC$. Let $O, H$ be the circumcenter and orthocenter of $\triangle ABC$. Let $H'=QR \cap AP$. Let $O'$ be the circumcenter of $\triangle BXC$. Let $Y'=XO' \cap AO$. Let $O_1, O_2$ be the circumcenters of $\triangle BXD$ and $\triangle CXE$, and $\omega_1$, $\omega_2$ be the corresponding circumcircle. Let $\omega$ be the circumcircle of $\triangle ABC$.
Let $R$ be the circumradius of $\triangle ABC$.

Lemma. $\angle BXE = \angle CXD = 90$. Also, $H'$ is the orthocenter of $\triangle XBC$.

Proof of Lemma. Let $AO \cap BC = K$ and $QR \cap BC = T$.
Now, harmonic chasing, we have $(T,H',R,Q)=(T,P;B,C)=-1$ by projecting at $A$.
Also, we have $(P,H';H,A)=-1$, so since $X$ is the midpoint of $AH$, we have $PB \cdot PC = PH \cdot PA = PX \cdot PH'$, which forces $H'$ to be the orthocenter of $\triangle XBC$. This proves the second claim.

It now suffices to show that $CH' \parallel XE$, which will show that $\angle BXE=90$.
It will similarly follow that $BH' \parallel XD$, which will show that $\angle CXD = 90$.
Let's show that $\frac{AX}{AH'}=\frac{AE}{AC}$.

We have $\frac{AE}{AC} = \frac{AO}{AK} = 1-\frac{OK}{AK} = 1-\frac{OM}{AP} = 1-\frac{AX}{AP}$.
(Note that $OM = \frac{1}{2}AH = AX$ by a well known lemma)
It now suffices to show that $\frac{AX}{AH'} + \frac{AX}{AP} = 1$.
$(A,H;H',P)=-1$ shows $\frac{1}{AH'}+\frac{1}{AP} = \frac{2}{AH} = \frac{1}{AX}$, which implies the desired.
The Lemma is now proved $\blacksquare$.

I claim that $\triangle AXB \sim \triangle AEY'$ and $\triangle AXC \sim \triangle ADY'$.
I will just show the first one, the second will follow similarly.

Since $Y' \in AO$, we have $\angle XAB = \angle HAB = \angle OAC = \angle Y'AE$. We will show $\frac{AX}{AB} = \frac{AE}{AY'}$.

Notice the similar triangles $\triangle AXY' \sim \triangle OO'Y'$. This shows that $\frac{AY'}{AO} = \frac{AX}{AX-OO'} = \frac{AH}{AH-2OO'} = \frac{AH}{AH-2OM+2O'M} = \frac{AH}{AH-AH+XH'} = \frac{AH}{XH'}$.
Therefore, $AY' = \frac{R \cdot AH}{XH'}$.

Now note that $X$ is the center of $(ARHQ)$ so $RX = AX$. Therefore, from sine law in $\triangle XH'R$, we have $XH' = \frac{RX}{ \sin \angle AH'R} \cdot \sin \angle XRQ = \frac{AH \cdot \sin (90-A)}{2 \sin (90+C-B)}$. Also, we have, from sine law in $\triangle AOE$, $AE= \frac{R}{\sin \angle AEO} \cdot \angle AOE = \frac{R \sin (90+C-B)}{\sin C}$. Now $AX \cdot AY' = AX \cdot \frac{R \cdot AH \cdot 2 \cdot \sin (90+C-B)}{AH \cdot \sin (90-A)} = AX \cdot \frac{2R \cdot \sin (90+C-B)}{\sin (90-A)} = AX \cdot \frac{2 \cdot AE \cdot \sin C}{\sin (90-A)} = \frac{AH \cdot AE \cdot \sin C}{\cos A} = 2R \cdot AE \cdot \sin C = AB \cdot AE$.

This implies $\frac{AX}{AB} = \frac{AE}{AY'}$. Therefore, we have $\triangle AXB \sim \triangle AEY'$ as desired.
Similarly, we have $\triangle AXC \sim \triangle ADY'$. This also shows $\triangle AXD \sim \triangle ACY'$ and $\triangle AXE \sim \triangle ABY'$.

Now let's angle chase. I claim that $Y'$ lies on both circles. This will show that $Y' \equiv Y$, which will finish the problem.

I will show $\angle DBY' + \angle DXY' = 180$. Note that from $\angle BXE = \angle CXD = 90$, we have $\angle BXD = \angle CXE$. We have $\angle ABY' + \angle DXO' = \angle AXE + \angle DXO'$. Since $O'$ and $H'$ are isogonal wrt $\angle BXC$, we have $\angle AXE + \angle DXO' = \angle AXE + \angle BXD + \angle BXO' = \angle AXE + \angle CXE + \angle H'AC  = 180$. Therefore, we have $D, B, X, Y'$ cyclic, which implies $Y' \in \omega_1$.

Similarly, we have $Y' \in \omega_2$, so $Y' \equiv Y$. Since $Y' \in AO$, so is $Y$. We are done. $\blacksquare$.
This post has been edited 1 time. Last edited by rkm0959, Mar 28, 2017, 2:07 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aryanna30
158 posts
#4 • 4 Y
Y by GGPiku, TacH, Adventure10, Mango247
My solution : Let $B',H',B_1,F$ be the antipode of $B$ in the circle $\odot O$,the intersection of $AH, \odot O $, the foot of $B$ in $AC$, the intersection of $(BDX),(CEX)$ . $\angle B'AE=\angle B'BC=\angle B'OE$ so $A,O,E,B'$are concyclic.$\angle OB'E=\angle EAO=\angle BAH'$ so $B,H',B_1,E$ are concyclic. by simple angle chasing : $X,B,H',B_1,E$ are concyclic. thus $\angle BXE=\angle CXD=90$ so $\angle EFC=\angle CXE=\angle XBD=\angle DFB=\alpha$ , $\angle BFC=\angle XFC+\angle XFB=\angle XEA+\angle XDA=180-\angle A-(180-(90+\alpha))=\alpha+90-\angle A$ so $\angle BFE=90-\angle A$ $\rightarrow$ $B,F,O,E$ are concyclic . similarly $C,O,D,F$ are concyclic.$AB$ cuts $(BOE),(COD)$ at $E',D'$ res. $\angle EE'B=\angle EFD=\angle DFC=\angle CD'B$ $\rightarrow$ $E'E \parallel CD'$ so $\tfrac {AE'}{AD'}=\tfrac {AE}{AC}=\tfrac {AD}{AB}$ thus $AD.AD'=AE.AE'$ so $A$ lies on radical axis of $(BOE),(COD)$ or line $OF$. done . $\blacksquare$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
artsolver
139 posts
#5 • 1 Y
Y by Adventure10
Is it secret who is the author of this amazing problem?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SmartClown
82 posts
#6 • 2 Y
Y by Adventure10, Mango247
Let $C_1,B_1$ be the midpoints of $AB,AC$ respectively. Note that $X$ is the orthocenter of $AB_1C_1$ and that $X_1$, the reflection of $X$ over $B_1C_1$ lies on $DE$. Let $C_1X$ cut $AO$ at $R_1$. By sine theorems in $\triangle AR_1C_1, \triangle DX_1R_1$ we get $\frac{C_1R_1}{C_1A}=\frac{cos \angle ACB}{sin \angle ABC}=\frac{C_1D}{C_1X_1}$ so $BDXR_1$ is cyclic. Because of same reason $CER_2X$ is cyclic, where $XB_1 \cap AO = R_2$. By sine theorems in $\triangle AR_1C_1$ and $AR_2B_1$ we get $\frac{AR_1}{AR_2}=\frac{AB^2}{AC^2}=\frac{AC_1 \cdot AB}{AB_1 \cdot AC}$, so our two circles must intersect on $AO$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#7 • 12 Y
Y by rkm0959, talkon, anantmudgal09, kapilpavase, Saro00, don2001, enhanced, AmirKhusrau, fuzimiao2013, Adventure10, Mango247, ehuseyinyigit
Let $ S $ be the projection of $ D $ on $ BC. $ Obviously $ ADSX $ and $ DXHS $ are parallelogram, so $ H $ is the orthocenter of $ \triangle CXS $ $ \Longrightarrow $ $ CX $ is perpendicular to $ DX $ $ ( \bigstar ). $ Let the perpendicular from $ B, $ $ C $ to $ AB, $ $ AC $ cut $ AC, $ $ AB $ at $ Y, $ $ Z, $ respectively and let $ W $ be the second intersection of $ AO $ with $ \odot (AYZ). $ Notice $ (B,E,O,W,Y) $ and $ (C,D,O,W,Z) $ are concyclic, so $$ \measuredangle BWD = \underbrace{ \measuredangle (\perp AB, OY) + \measuredangle (OZ,AB) = \measuredangle (BX,\perp CA) + \measuredangle (CA, CX) }_{\because \ \triangle ABC \cup X \text{ and } \triangle AYZ \cup O \ \text{are inversely similar}} \stackrel{ (\bigstar )}{=} \measuredangle BXD $$$ \Longrightarrow $ $ W $ $ \in $ $ \odot (BDX). $ Similarly, $ W $ lies on $ \odot (CEX), $ so the second intersection of $ \odot (BDX), $ $ \odot (CEX) $ lies on $ AO. $
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
baopbc
225 posts
#8 • 3 Y
Y by don2001, Adventure10, Mango247
Let the line passes through $X$ and perpendicular to $AB$ intersects $AO$ at $K$ and $AC$ at $M$. $F$ is the reflection of $E$ through $M$, since $M$ is the midpoint of $AC$ so $ME\cdot MC$ $=$ $MF\cdot MA$. Note that $\angle AKX$ $=$ $\angle ACB$ $=$ $\angle AEO$ $=$ $\angle OFM$ so $KFMO$ is a cyclic quadrilateral. Thus $\angle FKM$ $=$ $\angle FOM$ $=$ $\angle EOM$ $=$ $\angle XAF$ which imply $AFKX$ is a cyclic quadrilateral i.e $MF\cdot MA$ $=$ $MK\cdot MX$. Hence the circle $(CEX)$ passes through $K$. Define $L$ similarly and we get $(BDX)$ passes through $L$. The tangent at $A$ of $(O)$ meets $BC$ at $S$, then we get $\triangle ABC$ $\cup$ $S$ $\sim$ $\triangle XLK$ $\cup$ $A$ which imply $\tfrac{AK}{AL}$ $=$ $\tfrac{SC}{SB}$ $=$ $\tfrac{AC^2}{AB^2}$ $=$ $\tfrac{AE\cdot AC}{AD\cdot AB}$. Hence $(CEX)$ and $(BDX)$ intersects on $AO$. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
andria
824 posts
#10 • 3 Y
Y by mijail, Adventure10, Mango247
From Two parallel lines $\angle BXE=\angle CXD=90^{\circ}$ hence if $Y=\odot(CEX)\cap \odot(BDX)$ then:
$$90^{\circ}=\angle BXE=\angle A+\angle ABX+\angle AEX=\angle A+\angle DYX+\angle CYX=\angle A+\angle DYC$$$$\Longrightarrow \angle DYC=90^{\circ}-\angle A\ \clubsuit$$On the other hand $\angle EOC=\angle OCB=90^{\circ}-\angle A$ ; So combining this with $\clubsuit\Longrightarrow YCOD$ is cyclic. Let $AB\cap \odot(YCOD)=C'$ then $\angle AC'C=\angle DYC=90^{\circ}-\angle A\Longrightarrow \angle C'CA=90^{\circ}$ thus we conclude that $C'DOY$ is cyclic ; similarly $B'EOY$ is cyclic so because $DEB'C'$ is cyclic $\Longrightarrow AD.AC'=AE.AB'\Longrightarrow A,O,Y$ are collinear.
Q.E.D

[asy]
import graph; size(11.363882971513085cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -9.989189285669891, xmax = 28.374693685843194, ymin = -4.498210783562595, ymax = 13.508095734235024;  /* image dimensions */
pen uuuuuu = rgb(0.26666666666666666,0.26666666666666666,0.26666666666666666); pen evefev = rgb(0.8980392156862745,0.9372549019607843,0.8980392156862745); pen qqwuqq = rgb(0.,0.39215686274509803,0.); 

filldraw(arc((3.8818502271691893,2.1361015875017513),0.6028897271584036,3.5305225804302633,52.658962959976755)--(3.8818502271691893,2.1361015875017513)--cycle, evefev, qqwuqq); 
filldraw(arc((11.335929525368321,2.5959985267491685),0.6028897271584036,134.40208220088383,183.53052258043027)--(11.335929525368321,2.5959985267491685)--cycle, evefev, qqwuqq); 
filldraw(arc((10.159894859232196,-1.7419003822357084),0.6028897271584036,74.83132569953467,123.95976607908116)--(10.159894859232196,-1.7419003822357084)--cycle, evefev, qqwuqq); 
filldraw(arc((7.34316369040184,6.672980353946524),0.6028897271584036,-45.59791779911621,3.5305225804303073)--(7.34316369040184,6.672980353946524)--cycle, evefev, qqwuqq); 
 /* draw figures */
draw(circle((7.34316369040184,6.672980353946524), 5.706484016640463)); 
draw((5.53180383480297,12.084351280587748)--(5.797530020669884,7.777420983766684)); 
draw((5.797530020669884,7.777420983766684)--(6.063256206536798,3.47049068694562)); 
draw((5.797530020669884,7.777420983766684)--(10.159894859232196,-1.7419003822357084)); 
draw((10.159894859232196,-1.7419003822357084)--(3.8818502271691893,2.1361015875017513)); 
draw((10.159894859232196,-1.7419003822357084)--(11.335929525368321,2.5959985267491685)); 
draw((5.797530020669884,7.777420983766684)--(4.606302605058149,6.5041232777145845)); 
draw((5.797530020669884,7.777420983766684)--(8.787486563916426,6.7620912477593755)); 
draw((11.335929525368321,2.5959985267491685)--(7.34316369040184,6.672980353946524)); 
draw((5.797530020669884,7.777420983766684)--(3.8818502271691893,2.1361015875017513)); 
draw(circle((8.336238619796323,2.3265288496558147), 4.45845696340593), red); 
draw(circle((6.280151167171303,1.63829026431878), 5.145687507334737), red); 
draw((7.34316369040184,6.672980353946524)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(7.608889876268755,2.36605005712546)); 
draw((7.608889876268755,2.36605005712546)--(11.335929525368321,2.5959985267491685)); 
draw((5.53180383480297,12.084351280587748)--(4.606302605058149,6.5041232777145845)); 
draw((4.606302605058149,6.5041232777145845)--(3.8818502271691893,2.1361015875017513)); 
draw((3.8818502271691893,2.1361015875017513)--(3.1251008188296665,-2.426652198074765)); 
draw((3.1251008188296665,-2.426652198074765)--(12.49065475614913,0.7082998607440981)); 
draw((12.49065475614913,0.7082998607440981)--(11.335929525368321,2.5959985267491685)); 
draw((11.335929525368321,2.5959985267491685)--(8.787486563916426,6.7620912477593755)); 
draw((8.787486563916426,6.7620912477593755)--(5.53180383480297,12.084351280587748)); 
draw((10.159894859232196,-1.7419003822357084)--(4.606302605058149,6.5041232777145845)); 
draw((8.787486563916426,6.7620912477593755)--(7.34316369040184,6.672980353946524)); 
draw((7.34316369040184,6.672980353946524)--(4.606302605058149,6.5041232777145845)); 
draw((5.53180383480297,12.084351280587748)--(10.159894859232196,-1.7419003822357084), linetype("4 4") + blue); 
 /* dots and labels */
dot((5.53180383480297,12.084351280587748)); 
label("$A$", (5.344306108392175,12.463086873827125), NE * labelscalefactor); 
dot((3.8818502271691893,2.1361015875017513)); 
label("$B$", (3.1739030906219217,1.852227675839244), NE * labelscalefactor); 
dot((11.335929525368321,2.5959985267491685)); 
label("$C$", (11.634455595078187,2.495310051474873), NE * labelscalefactor); 
dot((7.34316369040184,6.672980353946524),linewidth(3.pt) + uuuuuu); 
label("$O$", (6.83143410204957,6.936597708208438), NE * labelscalefactor,uuuuuu); 
dot((6.063256206536798,3.47049068694562),linewidth(3.pt) + uuuuuu); 
label("$H$", (6.148159077936713,3.600607884598611), NE * labelscalefactor,uuuuuu); 
dot((4.606302605058149,6.5041232777145845),linewidth(3.pt) + uuuuuu); 
label("$D$", (4.118430329836754,6.7356344658223035), NE * labelscalefactor,uuuuuu); 
dot((8.787486563916426,6.7620912477593755),linewidth(3.pt) + uuuuuu); 
label("$E$", (9.001837119819823,7.157657274833185), NE * labelscalefactor,uuuuuu); 
dot((5.797530020669884,7.777420983766684),linewidth(3.pt) + uuuuuu); 
label("$X$", (5.886906862834738,7.901221271661881), NE * labelscalefactor,uuuuuu); 
dot((10.159894859232196,-1.7419003822357084),linewidth(3.pt) + uuuuuu); 
label("$Y$", (10.167423925659405,-2.3077114415537325), NE * labelscalefactor,uuuuuu); 
dot((12.49065475614913,0.7082998607440981),linewidth(3.pt) + uuuuuu); 
label("$B'$", (12.94071667058806,0.445484979136305), NE * labelscalefactor,uuuuuu); 
dot((3.1251008188296665,-2.426652198074765),linewidth(3.pt) + uuuuuu); 
label("$C'$", (2.4504354180318373,-2.8503121959962945), NE * labelscalefactor,uuuuuu); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
juckter
322 posts
#11 • 3 Y
Y by don2001, Adventure10, Mango247
Fairly long solution, but it exhibits some interesting properties of the configuration that haven't been discussed in other solutions.

First, prove that $\angle CXD = \angle BXE = 90^{\circ}$ as has been done numerous times in this thread.

Let $\Omega$ be the circumcircle of $ABC$ and let $AH$ cut $\Omega$ at $A, F$. Let $M$ be the midpoint of $BC$ and let the line through $F$ parallel to $HM$ cut $AO$ at $P$. We shall prove that $BDXP$ and $CEXP$ are cyclic which is of course sufficient.

Notice that $DE$ is the perpendicular bisector of $AF$ and thus $\angle DFO = \angle DAO = \angle DBO$. Thus $B, D, O, F$ are concyclic. Analogously $C, E, O, F$ are concyclic. Using this fact we find that

$$\angle BFE = \angle BFO + \angle EFO = \angle ECO + \angle ABE = \angle CAO + \angle ABC = \angle BAH + \angle ABC = 90^{\circ}$$
Thus $F, B, X, E$ are concyclic and analogously $F, C, X, D$ are concyclic.

Now, let $Q = BE \cap CD, Y = (BDO) \cap BE, Z = (CEO) \cap CD$, then $\angle QYD = \angle BOD = \angle COE = \angle QZE$ which implies $D, E, Y, Z$ are concylic. Thus

$$\frac{QY}{QZ} = \frac{QD}{QE} = \frac{QC}{QB} \implies QY \cdot QB = QZ \cdot QC$$
Which implies $Q$ lies on radical axis $OF$ of $(BDO), (CEO) \implies O, Q, F$, are collinear.

Now, by Ceva, $A, Q, M$ are collinear, and since $OM$ is parallel to $AF$ we get $\frac{OQ}{OF} = \frac{QM}{QA} = \frac{OM}{AF} = \frac{AX}{AF} = \frac{OX}{FP}$ using the well known fact that $AH = 2OM$ ($XOMH$ is a parallelogram). It follows that $X, Q, P$ are collinear.

Now let $\mathcal{I}$ be the composition of the inversion with center $A$ and radius $\sqrt{AD \cdot AC}$ with the reflection about the angle bisector of $\angle BAC$, and let $\mathcal{I}(W) = W'$ for any point $W$. Then it's clear that $D = C', E = B'$, so $Q'$ is the intersection of the circumcircles of $ABE, ACD$. Now notice that rays $AH$ and $AO$ are swapped by $\mathcal{I}$ since $O, H$ are isogonal conjugates. Moreover, as triangles $ADF$ and $AOC$ are isosceles with $\angle FAD = \angle CAO$ we have:

$$\frac{AD}{AF} = \frac{AO}{AC} \implies AD \cdot AC = AO \cdot AF = AX \cdot AP$$
Where the last equality follows from $OX$ being parallel to $PF$. Thus $X = P'$. Now notice that

$$\angle BQC = \angle BXC + \angle XBQ + \angle XCQ = (\angle CXE + \angle CXD - \angle BXE) + \angle XFE + \angle XFD = 180^{\circ} - \angle DXE + \angle BAC$$
On the other hand, as $Q' = (ABE) \cap (ACD)$, it must also lie on $(DQB)$ and $EQC$. It follows that

$$\angle DQ'E = \angle DQ'Q + \angle EQ'Q = \angle DBQ + \angle ECQ = \angle BQC - \angle BAC = 180^{\circ} - \angle DXE$$
From which it follows that $X, D, Q', E$ are concyclic and hence $Q, B, P, C$ are concyclic.

Now, let $\angle ABC = \beta, \angle PBC = \alpha$, then $\angle DBP = \alpha + \beta$ and it suffices to prove that $\angle DXP = 180^{\circ} - \alpha - \beta$. But $\angle XDQ = \angle XFC = \angle ABC = \beta$ and $\angle DQX = \angle PQC = \angle PBC = \alpha$, so we are finally done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EulerMacaroni
851 posts
#12 • 3 Y
Y by anantmudgal09, don2001, Adventure10
WLOG $AB<AC$, and define $\{A,H'\}\equiv AH\cap \odot(ABC)$, $P\equiv AH\cap DE$, $Q\equiv CH\cap AB$, $V\equiv BE\cap CD$, $U \equiv AO\cap XV$. Note that by reflection about $O$, $H'D$ passes through the antipode of $C$ with respect to $\odot(ABC)$, so $\angle CH'D=\angle CQD=\tfrac{\pi}{2}$. Then $AX\cdot AH'=AH\cdot AP=AQ\cdot AD$, so pentagon $CXQDH'$ is cyclic. Then $\angle AQX=\angle AH'D=\tfrac{\pi}{2}-\angle AH'C=\angle BCH$, so $\{CH,CD\}$ are isogonal with respect to $\angle XCB$ and consequently $\angle BCV=\angle XCQ=\angle XDQ$.

I now claim that $U\in\odot(BVC)$; note that $\{H,V\}$ are isogonal conjugates in $\triangle XBC$. Let $V'$ be the point on $\odot(BVC)$ with $VV'\parallel BC$; notice that $\overline{AOV'}$ are collinear from negative homothety through $V$. Then
\begin{align*}
\angle AUX&=\pi-\angle AXV-\angle XAO\\
&=\angle HXV-\angle XAO\\
&=\angle BXC-2\angle BXH-\angle B+\angle C\\
\end{align*}and $$\angle VCV'=\pi-\angle VV'C-\angle CVV'=\angle VBC-\angle VCB=\angle XBH-\angle XCH$$so we want to show that $$\angle BXC-2\angle BXH-\angle B+\angle C=\angle XBH-\angle XCH$$$$\Longrightarrow \angle BXC-\angle BXH=\angle B-\angle XCH$$$$\Longrightarrow \angle CXH+\angle XCH=\angle B$$which is true, as desired. Then $\angle BUX=\angle BUV=\angle BCV=\angle XDQ=\pi-\angle BDX$, and we're done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
atmchallenge
980 posts
#13 • 1 Y
Y by Adventure10
Is there a good complex solution to this? I tried it on the contest but got too messy to do by hand.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pieater314159
202 posts
#14 • 3 Y
Y by Adventure10, Mango247, Lcz
Let $P$ be the second intersection of $(BDX)$ and $(CEX)$, and perform an inversion about $A$ with radius $\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}$ and reflect across the angle bisector of $\angle BAC$. We see that $B\to E$ and $D\to C$, while lines $AX$ and $AO$ swap. We look at this and say it would be really nice if $X$ and $P$ are inverses of each other. In fact, this is true. We show this using complex numbers.

Let $(ABC)$ be the unit circle so $A=a,B=b,C=c$. Then

$$d+ab\bar{d}=a+b,d+bc\bar{d}=0 \implies d=\frac{c(a+b)}{c-a},$$
while

$$x=a+\frac{b+c}{2}.$$
Let $Q$ be the inverse of $X$ under this inversion: we have

$$(q-a)(x-a)=(c-a)(d-a) \implies (q-a)\left(\frac{b+c}{2}\right)=(c-a)\frac{ac+bc-ac+a^2}{c-a}=a^2+bc$$
$$q-a=\frac{2(a^2+bc)}{b+c}.$$
We want to show that $Q,B,X,D$ are concyclic; this is equivalent to $q-a,b-a,x-a,d-a$ being concyclic. These are

$$\frac{2(a^2+bc)}{b+c},b-a,\frac{b+c}{2},\frac{a^2+bc}{c-a}.$$
The cross ratio is

\begin{align*}
\frac{\frac{
\frac{2(a^2+bc)}{b+c}-\frac{b+c}{2}
}{
\frac{2(a^2+bc)}{b+c}-\frac{a^2+bc}{c-a}
}}{\frac{
(b-a)-\frac{b+c}{2}
}{
(b-a)-\frac{a^2+bc}{c-a}
}}
&=
\frac{\frac{
\frac{4(a^2+bc)-(b+c)^2}{2(b+c)}
}{
\frac{(a^2+bc)(2(c-a)-(b+c)}{(b+c)(c-a)}
}}{\frac{
\frac{2(b-a)-(b+c)}{2}
}{
\frac{(b-a)(c-a)-(a^2+bc)}{c-a}
}}\\
&=
\frac{\frac{
\frac{4a^2-(b-c)^2}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c)}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
\frac{\frac{
\frac{(2a+(b-c))(2a-(b-c))}{2(b+c)}
}{
-\frac{(a^2+bc)(2a+(b-c))}{(b+c)(c-a)}
}}{\frac{
-\frac{2a-(b-c)}{2}
}{
-\frac{a(b+c)}{c-a}
}}\\
&=
-\frac{(2a+(b-c))(2a-(b-c))(b+c)(c-a)(2)(a)(b+c)}{(2)(b+c)(a^2+bc)(2a+(b-c))(2a-(b-c))(c-a)}\\
&=
-\frac{a(b+c)}{(a^2+bc)},
\end{align*}
the conjugate of which is

$$-\frac{\frac{1}{a}\frac{b+c}{bc}}{\frac{a^2+bc}{a^2bc}}=-\frac{a(b+c)}{a^2+bc},$$
so it is real, and the inverse of $X$ lies on $(BDX)$ and hence $(CEX)$. This point is obviously on $AO$, finishing the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rmtf1111
698 posts
#15 • 2 Y
Y by Adventure10, Mango247
After establishing that $\angle{BXE}=\angle{DXC}=90^{\circ}$ it is easy to finish with inversion. Let $Y=(CEX) \cap (BDX).$ Let $Z'$ be the image of $Z$ under an inversion with pole $A,$ power $\sqrt{AC\cdot AD},$ followed by a reflection over the bisector of angle ${A}.$ Clearly $Y'$ lies inside triangle ${ADE}.$
$$360^{\circ}-\angle{BY'E}=\angle{AY'B}+\angle{AY'E}=\angle{AEY}+\angle{ABY}=360^{\circ}-\angle{BAC}-\angle{BYE} \implies \angle{BY'E}=\angle{BAC}+\angle{BYE}$$$$\angle{BYE}=\angle{BYX}+\angle{EYX}=\angle{ADX}+\angle{ACD}=90^{\circ}=\angle{BAC} \implies \angle{BY'E}=90^{\circ}$$Analogously, $\angle{CY'D}=90^{\circ},$ which means that $Y'$ is the intersection of circles $(DXC)$ and $(BXE)$ which lies inside $\triangle{ADE},$ but this is exactly $X,$ hence the conclusion.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
GeoMetrix
924 posts
#16 • 3 Y
Y by sameer_chahar12, mueller.25, amar_04
This was a really nice prblem. One of the nicest configurations ive seen in a while. Here goes my solution.

Proof: Define $F$ as the required point of intersection. We begin with a few claims.

Claim 1: If $I=\overline{DH'} \cap \overline{BC}$ then $\angle IHC=90^\circ$.

Proof: For this notice that as $H'$ is the reflection of $H$ over $\overline{BC}$ $\implies$ $\angle CHI=\angle CH'D$. But now notice that trivially we have that $DA=DH'$ hence $$\angle CH'D=\angle DH'A+\angle AH'C=\angle B+90^\circ-\angle B=90^\circ$$. $\square$.

Now we bring the point $X$ in the picture.
Claim 2: $\angle CXD=90^\circ$.

Proof: For this notice that by claim1 it just suffices to show that $(DXCH')$ is cyclic. Now we use phantom points. Define $D=\odot(CXH') \cap \overline{AB}$ . Then we need to show that $\overline{OD}\parallel \overline{BC}$. Now i present a proof told to me by amar_04.

Now observe that it suffices to show that $\overline{AD}=\overline{DH'}$. Alter the labelling a bit. Let $\overline{CE}\perp \overline{AB}$ and $\overline{AQ}\perp \overline{BC}$ where $E\in \overline{AB}$ and $Q\in \overline{BC}$. Note That $\overline{HX}\cdot \overline{HH'}=\overline{HA}\cdot \overline{HQ}=\overline{HE}\cdot \overline{HC}$. So, $E\in\odot(CH'X)$. So now draw a line $\ell$ to $BC$ though $H'$ meeting $\overline{AB}$ at $T$. So, $\angle HTE=\angle EH'X=\angle XDA\implies \overline{AD}=\overline{DX}=\overline{DH'}$ $\square$.

Now back to the main problem. Observe by claim 2 we have that $(CXDH')$ is cyclic. But also $(CHIH')$ is cyclic by claim 1. Hence we have that there exists a spiral similirity at $C$ such that $\overline{HI} \mapsto \overline{XD}$ $\implies$ $\triangle {XCD} \sim \triangle {HCI}$ $\implies$ $$\angle XCD=\angle HCI=\angle ACO$$and as we also know that $\angle DAX=\angle OAC$ so we can directly conclude that $(X,O)$ are isogonal conjugates w.r.t $\triangle {ADC}$ . So we may have that $$\angle EFB=\angle XFB+\angle XFE=\angle ADX+\angle XCE=\angle EDC+\angle OCD=\angle DCB+\angle OCD=\angle OCB=\angle OBC=\angle DOB$$. Hence we have that $(OEFB)$ is cyclic. Similiarly conclude that $(ODCF)$ is cyclic. Now we state a lemma which finishes the problem.

Lemma: If $\odot(OEB)\cap \odot(OCD)=F$ then $O \in \overline{AF}$.

Proof: Observe that $$\angle EFB=\angle DOB=\angle EOC=\angle DFC$$. So we have that $(\overline{FD},\overline{FE})$ are isogonal w.r.t $\angle BFC$. Now applying the isogonal line lemma to $(\overline{FD},\overline{FE})$ w.r.t $\angle BFC$ we have that if $G=\overline{CD}\cap \overline{BE}$ then $(\overline{FG},\overline{FA})$ are isogonal. But notice that $$\angle BFC=\angle OFB+\angle OFC=\angle EBC+\angle DCB=180^\circ -\angle BGC$$. So we have that $(BGCF)$ is cyclic. Now just notice that $$\angle GFC=\angle GBC=\angle EBC=\angle OEB=\angle OFB$$with which we have that $(\overline{FG},\overline{FO})$ are isogonal w.r.t $\angle BFC$ . Now earlier we already had $(\overline{FG},\overline{FA})$ are isogonal with which we are done. $\blacksquare$.
[asy]
 /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(12cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -28.744810636388543, xmax = 38.626461199971594, ymin = -25.087300536119866, ymax = 19.403987423346614;  /* image dimensions */
pen wrwrwr = rgb(0.3803921568627451,0.3803921568627451,0.3803921568627451); 
 /* draw figures */
draw((-4.7801760376472116,13.950725144137508)--(-7.56,-2.28), linewidth(0.8)); 
draw((-7.56,-2.28)--(8,-2.26), linewidth(0.8)); 
draw((8,-2.26)--(-4.7801760376472116,13.950725144137508), linewidth(0.8)); 
draw(circle((0.21098652855647296,4.742480783064175), 10.473942332069228), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw(circle((3.266103826671193,-0.5242884546801765), 10.96754517183467), linewidth(0.8)); 
draw(circle((-4.974307769629735,-6.808894958451459), 13.748640203456471), linewidth(0.8)); 
draw((-4.7801760376472116,13.950725144137508)--(8.336947610659198,-10.249183848185663), linewidth(1.2) + linetype("4 4")); 
draw(circle((1.3557146108993223,-4.335137577706486), 9.149511325000091), linewidth(0.4) + linetype("4 4")); 
draw((-4.771162566203684,6.938244361073334)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(-7.56,-2.28), linewidth(0.4)); 
draw((2.477103169504549,4.745393529389301)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(-6.3587113083741285,4.734036441371462), linewidth(0.4) + wrwrwr); 
draw((-4.771162566203684,6.938244361073334)--(8,-2.26), linewidth(0.4)); 
draw((0.21098652855647299,4.742480783064174)--(8,-2.26), linewidth(0.4)); 
draw((-4.771162566203684,6.938244361073334)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((-3.068492691278137,0.5606330775406088), 5.314398760492078), linewidth(0.4)); 
draw((-4.762149094760157,-0.0742364219908404)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-6.3587113083741285,4.734036441371462)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4)); 
draw((-7.56,-2.28)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-5.1393956738612,-2.276888683385425)--(-4.762149094760157,-0.0742364219908404), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(-7.56,-2.28), linewidth(0.4)); 
draw((8,-2.26)--(-4.7564880054789525,-4.478563882765253), linewidth(0.4) + wrwrwr); 
draw((-4.762149094760157,-0.0742364219908404)--(8,-2.26), linewidth(0.4)); 
draw((-6.3587113083741285,4.734036441371462)--(8,-2.26), linewidth(0.4)); 
draw(circle((-3.059124112539502,-6.728121181117919), 11.927628977533937), linewidth(0.4) + linetype("4 4")); 
draw((-6.3587113083741285,4.734036441371462)--(8.336947610659198,-10.249183848185663), linewidth(0.4)); 
draw((8.336947610659198,-10.249183848185663)--(8,-2.26), linewidth(0.4)); 
draw((-7.56,-2.28)--(2.477103169504549,4.745393529389301), linewidth(0.4)); 
draw(circle((0.2255521701851131,-6.5895884040177295), 8.898728830946485), linewidth(0.4)); 
 /* dots and labels */
dot((-4.7801760376472116,13.950725144137508),dotstyle); 
label("$A$", (-4.596146965173741,14.373015825176855), NE * labelscalefactor); 
dot((-7.56,-2.28),dotstyle); 
label("$B$", (-7.395992028502993,-1.8573360263099332), NE * labelscalefactor); 
dot((8,-2.26),dotstyle); 
label("$C$", (8.178146136265973,-1.8135884471954136), NE * labelscalefactor); 
dot((0.21098652855647299,4.742480783064174),linewidth(4pt) + dotstyle); 
label("$O$", (0.3910770538814897,5.09852905289869), NE * labelscalefactor); 
dot((-4.762149094760157,-0.0742364219908404),linewidth(4pt) + dotstyle); 
label("$H$", (-4.596146965173741,0.28629535030152936), NE * labelscalefactor); 
dot((-4.771162566203684,6.938244361073334),linewidth(4pt) + dotstyle); 
label("$X$", (-4.596146965173741,7.285908008624673), NE * labelscalefactor); 
dot((-6.3587113083741285,4.734036441371462),linewidth(4pt) + dotstyle); 
label("$D$", (-6.171059813296446,5.09852905289869), NE * labelscalefactor); 
dot((2.477103169504549,4.745393529389301),linewidth(4pt) + dotstyle); 
label("$E$", (2.665951167836507,5.09852905289869), NE * labelscalefactor); 
dot((8.336947610659198,-10.249183848185663),linewidth(4pt) + dotstyle); 
label("$F$", (8.52812676918213,-9.906890583381548), NE * labelscalefactor); 
dot((-4.7564880054789525,-4.478563882765253),linewidth(4pt) + dotstyle); 
label("$H'$", (-4.596146965173741,-4.132210140264955), NE * labelscalefactor); 
dot((-5.1393956738612,-2.276888683385425),linewidth(4pt) + dotstyle); 
label("$I$", (-4.946127598089897,-1.9448311845389725), NE * labelscalefactor); 
dot((-1.1581917939609276,2.200896647923807),linewidth(4pt) + dotstyle); 
label("$G$", (-0.965097898668617,2.561169464256551), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */
[/asy]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rg230403
222 posts
#17 • 1 Y
Y by p_square
Claim 1.$\angle BXD=\angle CXE$

We present two proofs of this claim but before that let's see how this claim finishes.
Perform $\sqrt{AB\cdot AE}$ inversion with center $A$ and reflect across the angle bisector of $\angle BAC$. Observe that this transformation maps $B$ to $E$ and $C$ to $F$. Let $X$ go to a point $X'$ under the inversion. Now, note that $X'$ lies on $AO$ as $AO$ and $AH$ are isogonal. Also, $\angle CXE=\angle BXD=\angle BXA-\angle DXA=\angle AEX'-\angle ACX'=\angle EX'C$. Thus, $CEXX'$ are cyclic. Similarly, $BDXX'$ are collinear and we get the desired result.
Now, we prove claim 1.
Let $D',E'$ be the feet of perpendiculars from $D,E$ respectively to $BC$ and let $H$ be the orthocenter and $T$ be the foot of perpendicular from $A$ to $BC$.

Remember that $AX=DD'=EE'=XH$ so $EE'AX, DD'AX, EE'XH, DD'XH$ are all parallelograms.

Proof 1(by p_square):
We claim that $H$ is the orthocenter of $E'XC'$.
Proof: We have that $CH\perp AB=AE\parallel XE'\implies E'X\perp CH$ and we have $XH\perp CE'$. Thus, we get that $EX\parallel E'H\perp XC\implies \angle EXC=90$. Similarly, $\angle BXD=90\implies \angle BXD=\angle CXE$.
Proof 2(Mine):Now, let $U$ be a point on $AH$ such that $\frac{TA}{TX}=\frac{TU}{TH}$.
$\angle DXB=\angle DXT-\angle BXT=\angle D'HT-\angle BXT=\angle BUT-\angle BXT=\angle XBU$. Similarly, we have $\angle CXE=\angle XCU$. Thus, we want $\angle XBU\angle XCU$. Let the reflection of $B$ in $T$ be $B'$. Now, $TX\cdot TU=TA\cdot TH=BT\cdot TC=TB'\cdot TC$. Thus, we have that $XUB'C$ is cyclic. So, $\angle BXD=\angle XBU=\angle XB'U=XCU=\angle CXE$ and thus, we are done.
This post has been edited 1 time. Last edited by Rg230403, Feb 10, 2021, 7:12 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TheUltimate123
1740 posts
#18 • 2 Y
Y by tapir1729, math_comb01
Very cool. The key idea is that the problem inverts to itself with the two intersections of \((BDX)\) and \((CEX)\) swapped. First, a claim:

Claim: \(\angle BXE=\angle CXD=90^\circ\).
Proof

[asy] size(6cm); defaultpen(fontsize(10pt)); pair A,B,C,H,O,D,EE,X,Y; A=dir(110); B=dir(220); C=dir(320); H=A+B+C; O=origin; D=extension(A,B,O,O+C-B); EE=extension(A,C,O,O+C-B); X=(A+H)/2; Y=reflect(circumcenter(B,D,X),circumcenter(C,EE,X))*X;

draw(A--H); draw(A--Y,dashed); draw(circumcircle(B,D,X),gray); draw(circumcircle(C,EE,X),gray); draw(unitcircle); draw(D--EE); draw(A--B--C--cycle,linewidth(1));

dot("\(A\)",A,A); dot("\(B\)",B,dir(210)); dot("\(C\)",C,dir(-30)); dot("\(H\)",H,S); dot("\(O\)",O,SW); dot("\(D\)",D,W); dot("\(E\)",EE,NE); dot("\(X\)",X,dir(305)); dot("\(Y\)",Y,dir(300));     [/asy]

From the claim, we deduce \(\measuredangle BXD=\measuredangle EXC\). Denote by \(\Psi\) inversion at \(A\) with radius \(\sqrt{AB\cdot AE}=\sqrt{AC\cdot AD}\) followed by reflection over the bisector of \(\angle BAC\), so \(\Psi\) swaps \((B,E)\) and \((C,D)\).

Let \(Y=\Psi(X)\) lie on \(\overline{AO}\). Then \[\measuredangle BYD=\measuredangle BYA+\measuredangle AYD=\measuredangle XEA+\measuredangle ACX=\measuredangle EXC=\measuredangle BXD\]so \(Y\) lies on \((BDX)\). Similarly \(Y\) lies on \((CEX)\), so \(Y\) is the desired intersection.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Idio-logy
206 posts
#19
Y by
This is routine with complex numbers once you guess the intersection (which is not easy).

Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathLuis
1470 posts
#20
Y by
Let $AH,BH,CH$ hit $BC,AC,AB$ at $A_1,B_1,C_1$, now let $AH$ hit $(ABC)$ again at $H_A$ now by PoP we have that $XH \cdot HA_1=AH\cdot HA_1=BH \cdot HB_1=CH \cdot HC_1$ so $XBH_AB_1, XCH_AC_1$ are cyclic. Now consider an inversion with reflection that sends $D$ to $C$ and $B$ to $E$, this gives that $O,H_A$ are inverses so $DBH_AO, ECH_AO$ are cyclic and by angle chase.
$$\angle BH_AD=\angle BOD=\angle OBC=90-\angle BAC=\angle OCB=\angle EOC=\angle CH_AE$$Now note that $H_A,A$ are symetric w.r.t $DE$ so $\angle BAC=\angle DH_AE$ so $\angle BH_AE=\angle CH_AD=90$ and that means $CH_AC_1DX, BH_AEB_1X$ are cyclic so $\angle BXE=90=\angle CXD$ so $\angle BXD=\angle CXE$ and since $DE \parallel BC$ we get $(DXE), (BXC)$ tangent and also inverting gives $(DOC) \cap (BOE)=X'$ and $(DX'E), (BX'D)$ are tangent at $X'$ and $A,O,X'$ colinear and $\triangle BDX \sim \triangle ECX'$ so now $\angle DXB=\angle EX'C=\angle DX'B$ hence $DBX'X$ is cyclic but inverting gives $CEXX'$ cyclic so $(BDX),(CEX)$ meet at $X'$ which lies in $AO$ thus we are done :D

Note: I wrote this at the hospital with one hand because yesterday i had finger surgery, it went good so i still alive lol.
This post has been edited 3 times. Last edited by MathLuis, May 24, 2024, 2:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CT17
1481 posts
#21
Y by
Claim: $\angle BXE = \angle CXD = 90^\circ$.

Proof: Let $P$ be the foot from $E$ to $BC$, so that $AXPE$ is a parallelogram. Let $Q$ be the reflection of $C$ over $P$, so that $HQ\parallel AC$. Let $R$ be the reflection of $Q$ over $E$, so that $AHCR$ is a parallelogram. Since $AR\parallel HC\perp AB$ and $CR\perp CB$, $R$ is actually the antipode of $B$ in $(ABC)$. Then we have $\angle QBR = 90^\circ - \angle A = \angle HBA$ and $\angle BQR = 180^\circ - \angle C = \angle BHA$, so $\triangle BQR\sim\triangle BHA$. Hence, we also have $\triangle BQE\sim\triangle BHX$, inducing the second spiral similarity $\triangle BHQ\sim\triangle BXE$, so $\angle BXE = \angle BHQ = 90^\circ$ as desired, and $\angle CXD = 90^\circ$ follows by symmetry.

Note that the claim implies $\angle DXB = \angle CXE$. Now, if $T$ is the point on $AO$ satisfying $\triangle CAX\sim\triangle BAT$, we have $\angle BTD = \angle CXE = \angle BXD$, so $T$ lies on $(BDX)$. Hence by PoP, the other intersection $T'$ of $(BXD)$ with $AO$ satisfies

$$AT' = \frac{AB\cdot AD}{AT} = \frac{AB\cdot AD}{AX\cdot \frac{AB}{AC}} = \frac{AD\cdot AC}{AX} = \frac{\sqrt{AB\cdot AC\cdot AD\cdot AE}}{AX}$$
which is symmetric in $B$ and $C$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math_comb01
662 posts
#22
Y by
Very Nice Problem!
[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
import graph; size(15 cm); 
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ 
pen dotstyle = black; /* point style */ 
real xmin = -3.582269769522469, xmax =9.3495599740257218, ymin = -6.750263899423706, ymax = 4.296190961229847;  /* image dimensions */
pen zzttff = rgb(0.6,0.2,1); pen ffvvqq = rgb(1,0.3333333333333333,0); pen ccqqqq = rgb(0.8,0,0); pen ttffqq = rgb(0.2,1,0); pen fuqqzz = rgb(0.9568627450980393,0,0.6); 

draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25)--(6.4,-1.69)--cycle, linewidth(0.4) + zzttff); 
 /* draw figures */
draw((-0.9162004708649716,4.002019967362306)--(-1.54,-2.25), linewidth(0.4) + zzttff); 
draw((-1.54,-2.25)--(6.4,-1.69), linewidth(0.4) + zzttff); 
draw((6.4,-1.69)--(-0.9162004708649716,4.002019967362306), linewidth(0.4) + zzttff); 
draw(circle((2.2537760815942054,0.5286034145393064), 4.702485926886521), linewidth(0.8) + ffvvqq); 
draw((xmin, 0.07052896725440806*xmin + 0.3696469150817805)--(xmax, 0.07052896725440806*xmax + 0.3696469150817805), linewidth(0.4)); /* line */
draw(circle((4.501891557302407,-1.575832419914503), 6.079387758338865), linewidth(0.4) + blue); 
draw(circle((-0.4654900211539337,-7.461514690475687), 8.969132346717876), linewidth(0.4) + ccqqqq); 
draw((-0.9162004708649716,4.002019967362306)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(2.2537760815942054,0.5286034145393064), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((2.2537760815942054,0.5286034145393064)--(2.43,-1.97), linewidth(0.4)); 
draw((-0.5637526340533822,-0.9951868617163078)--(5.423752634053378,-2.9448131382836977), linewidth(0.4)); 
draw(circle((3.2243161541048657,-4.775751493570609), 5.392414025604744), linewidth(0.4) + ttffqq); 
draw(circle((0.9920346646962718,-6.8130193744306435), 7.449256109078176), linewidth(0.4) + ttffqq); 
draw(circle((0.8450117237704114,-0.23329172358850042), 2.35124296344326), linewidth(0.4) + fuqqzz); 
draw((-1.54,-2.25)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((-1.2876844867144508,0.2788278580842878)--(6.4,-1.69), linewidth(0.4)); 
draw((-1.54,-2.25)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(6.4,-1.69), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(3.4407305698579895,0.6123180887745355), linewidth(0.4)); 
draw((8.418109611952028,-6.225799265460478)--(-1.2876844867144508,0.2788278580842878), linewidth(0.4)); 
draw((-0.7399765524591768,1.503416552822999)--(8.418109611952028,-6.225799265460478), linewidth(0.4)); 
draw(circle((3.103865690898049,0.5190026237808545), 3.9678954088420353), linewidth(0.4) + linetype("4 4") + blue); 
draw(circle((-3.230341837388172,0.0722575084357314), 2.8723049042034083), linewidth(0.4) + linetype("4 4") + ccqqqq); 
draw((xmin, -14.178571428571441*xmin-8.98839385168748)--(xmax, -14.178571428571441*xmax-8.98839385168748), linewidth(0.4)); /* line */
draw((xmin, 1.2853434304193623*xmin-0.27057111715418225)--(xmax, 1.2853434304193623*xmax-0.27057111715418225), linewidth(0.4)); /* line */
draw(circle((0.9503652849289946,-0.818840955612733), 2.872304904203409), linewidth(0.4) + blue); 
 /* dots and labels */
dot((-0.9162004708649716,4.002019967362306),dotstyle); 
label("$A$", (-0.8552137275571697,3.913076919819897), NE * labelscalefactor); 
dot((-1.54,-2.25),dotstyle); 
label("$B$", (-1.477774044848339,-2.0890430622693166), NE * labelscalefactor); 
dot((6.4,-1.69),dotstyle); 
label("$C$", (6.455879229349382,-1.5303350852131397), NE * labelscalefactor); 
dot((2.2537760815942054,0.5286034145393064),linewidth(4pt) + dotstyle); 
label("$O$", (2.321440199133668,0.6566075678353237), NE * labelscalefactor); 
dot((-0.5637526340533822,-0.9951868617163078),linewidth(4pt) + dotstyle); 
label("$H$", (-0.5040258562647153,-0.8598855127457276), NE * labelscalefactor); 
dot((-1.2876844867144508,0.2788278580842878),linewidth(4pt) + dotstyle); 
label("$D$", (-1.2223646839083722,0.4011982068953572), NE * labelscalefactor); 
dot((3.4407305698579895,0.6123180887745355),linewidth(4pt) + dotstyle); 
label("$E$", (3.502708493481015,0.7364229931290632), NE * labelscalefactor); 
dot((-0.7399765524591768,1.503416552822999),linewidth(4pt) + dotstyle); 
label("$X$", (-0.6796197919109425,1.6303557564189461), NE * labelscalefactor); 
dot((8.418109611952028,-6.225799265460478),linewidth(4pt) + dotstyle); 
label("$F$", (8.48319103181037,-6.095777412015042), NE * labelscalefactor); 
dot((5.423752634053378,-2.9448131382836977),linewidth(4pt) + dotstyle); 
label("$A'$", (5.482131040765758,-2.8233449749717203), NE * labelscalefactor); 
dot((2.43,-1.97),linewidth(4pt) + dotstyle); 
label("$M$", (2.4970341347798954,-1.8495967863880978), NE * labelscalefactor); 
dot((-1.228100235432486,0.8760099836811528),linewidth(4pt) + dotstyle); 
label("$P$", (-1.1585123436733804,1.0077954391277777), NE * labelscalefactor); 
dot((2.7418997645675143,1.1560099836811528),linewidth(4pt) + dotstyle); 
label("$N$", (2.800332750896106,1.279167885126492), NE * labelscalefactor); 
dot((1.5817007453631895,-0.4560261269164034),linewidth(4pt) + dotstyle); 
label("$J$", (1.650990626666255,-0.33310370580704657), NE * labelscalefactor); 
dot((-0.0448438436610229,-8.352572211207967),dotstyle); 
label("$A'_{1}$", (-8.182269769522469,4.296190961229847), NE * labelscalefactor); 
dot((-0.397291680472613,-3.3553653821293556),linewidth(4pt) + dotstyle); 
label("$K$", (-0.3284319206184881,-3.2224221014404177), NE * labelscalefactor); 
dot((1.725249073262489,1.9469664450008537),linewidth(4pt) + dotstyle); 
label("$L$", (1.7946583921949864,2.0773221380638875), NE * labelscalefactor); 
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); 
 /* end of picture */ [/asy]
We first give 2 solutions
Solution 1:
Let $K$ be the reflection of orthocenter in $BC$, and Let $BL \perp AC$, Let $F$ be the intersection of the circles.
Claim 1: $\measuredangle BXE = \measuredangle CXD = 90^\circ$
Proof
Now just invert at $A$ with radius $\sqrt{AB \cdot AE}$, then do some angle chasing to get the inverse of $X$ is $F$. Hence we're done.
$\quad$
$\quad$
Solution 2:
Let $(COD)$ and $(BOE)$ intersect at $F'$, $(FBD),(FCE)$ intersect at $X'$
Claim: $FA,FD$ are isogonal in $BFC$
Claim 2 $A-O-F$
CLaim 3 $FO$ and $FJ$ are isogonal where $J = BE \cap CD$
Claim 4: $F-J-X$
Claim 5: $AX \perp BC$
ALL the proofs of claims are angle chase or DDIT.
Hence we're done
Fact: While playing around with this problem, I found out that under $\sqrt{XB \cdot XC}$ inversion $H$ and $F$ are interchanged. I will be interested in any solution using that.
Remark
This post has been edited 2 times. Last edited by math_comb01, Dec 25, 2023, 6:21 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
669 posts
#23
Y by
Let $AH\cap (ABC)=F$ and $(BOE)\cap (COD)=P,(BOE)\cap (ABC)=Q,QC\cap AF=W$. Let $EF$ be the altitude from $E$ to $BC$. Let $C'$ be the antipode of $C$ on $(ABC)$. We will show that $P\in AO,O\in (CEX)$ and similarily $P\in (CDX)$.
Claim: $A,O,P$ are collinear.
Proof: If $D^*,E^*,P^*$ are the images of $D,E,P$ under the inversion around $(ABC)$, then $F,B,D^*$ and $F,C,E^*$ are collinear. DDIT at $P^*BFC$ gives $(\overline{AD^*},\overline{AE^*}),(\overline{AB},\overline{AC}),(\overline{AF},\overline{AP^*})$ is an involution which must be reflection over the angle bisector of $\measuredangle CAB$ thus, $P^*$ lies on $AO$.
Claim: $E,C,P,W$ are concyclic.
Proof: First notice that $\measuredangle BQE=90-\measuredangle A=\measuredangle BQC'$ hence $Q,E,C'$ are collinear and $\measuredangle CQE=90$.
\[\measuredangle APQ=\measuredangle OPQ=90-\measuredangle QAB=\measuredangle AWQ\]Thus, $A,W,Q,P$ are concyclic. Since $E$ lies on the perpendicular bisector of $BC'$, we have $EC'=EB$ and since $C'B\perp BC$ we observe $\measuredangle OBQ=180-\measuredangle QEO=\measuredangle (BC,EQ)=\measuredangle EBC$ so $\measuredangle OBE=\measuredangle QBC$.
\[\measuredangle WPE=\measuredangle WPO+\measuredangle OPE=\measuredangle WQA+\measuredangle OBE=180-\measuredangle B+\measuredangle QBC=180-\measuredangle ACQ\]Which proves the claim.
Claim: $X$ lies on $(ECPW)$.
Proof: Let $A'$ be the reflection of $A$ over $E$. Note that $\measuredangle AFA'=90$ and $VH=VF=VA'$. Since $E,V,C,Q$ lie on the circle with diameter $EC$, we get $\measuredangle FQC'=\measuredangle C=\measuredangle VQC'$ hence $F,V,Q$ are collinear. We have $\measuredangle BCQ=\measuredangle EVQ=90-\measuredangle VFA'=\measuredangle A'HF$ thus,
\[\measuredangle XEA=\measuredangle HA'A=\measuredangle C-\measuredangle FA'H=\measuredangle BCQ-90=\measuredangle AWC\]As desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a