Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Positive integers and a_n
Kunihiko_Chikaya   1
N 5 minutes ago by Mathzeus1024
Source: 2018 The University entrance of exam / Humanities, Problem 2
Define a sequence $a_1,\ a_2\cdots$ by the expression

$$a_n=\frac{_{2n}C_n}{n!}\ \ (n=1,\ 2,\ \cdots\cdots).$$
(1) Compare the magnitudes of the values $a_7$ and 1.

(2) Let $n\geq 2.$ Find the range of $n$ such that $\frac{a_n}{a_{n-1}}<1.$

(3) Determine all of the integers $n\geq 1$ such that $a_n$ is an integer.
1 reply
Kunihiko_Chikaya
Feb 25, 2018
Mathzeus1024
5 minutes ago
Killer NT that nobody solved (also my hardest NT ever created)
mshtand1   13
N 7 minutes ago by mshtand1
Source: Ukraine IMO 2025 TST P8
A positive integer number \( a \) is chosen. Prove that there exists a prime number that divides infinitely many terms of the sequence \( \{b_k\}_{k=1}^{\infty} \), where
\[
b_k = a^{k^k} \cdot 2^{2^k - k} + 1.
\]
Proposed by Arsenii Nikolaev and Mykhailo Shtandenko
13 replies
mshtand1
Apr 19, 2025
mshtand1
7 minutes ago
Outcome related combinatorics problem
egxa   1
N 14 minutes ago by iliya8788
Source: All Russian 2025 10.7
A competition consists of $25$ sports, each awarding one gold medal to a winner. $25$ athletes participate, each in all $25$ sports. There are also $25$ experts, each of whom must predict the number of gold medals each athlete will win. In each prediction, the medal counts must be non-negative integers summing to $25$. An expert is called competent if they correctly guess the number of gold medals for at least one athlete. What is the maximum number \( k \) such that the experts can make their predictions so that at least \( k \) of them are guaranteed to be competent regardless of the outcome?
1 reply
egxa
Apr 18, 2025
iliya8788
14 minutes ago
Equation Roots
joml88   23
N 16 minutes ago by P162008
Source: AIME 2 2002 #13
The equation $2000x^6+100x^5+10x^3+x-2=0$ has exactly two real roots, one of which is $\frac{m+\sqrt{n}}r,$ where $m, n$ and $r$ are integers, $m$ and $r$ are relatively prime, and $r>0.$ Find $m+n+r.$
23 replies
joml88
Dec 9, 2005
P162008
16 minutes ago
Number of complex solutions (x,y,z)
CarSa   1
N 25 minutes ago by Mathzeus1024
Find all solutions $(x,y,z)$ to the system of equations
\[\begin{aligned}
\begin{cases}
x^2+y^2-xy-3x+3=0,\\
x^2+y^2+z^2-xy-yz-2zx-3x+3=0.\\
\end{cases}
\end{aligned}\]
1 reply
CarSa
Apr 27, 2025
Mathzeus1024
25 minutes ago
Integral-Summation Duality
Mathandski   3
N an hour ago by ihategeo_1969
Source: Friend at school gave it to me
Given a continuous function $f$ such that $f(2x) = 3 f(x)$ and $\int_0^1 f(x) \, dx = 1$, evaluate $\int_1^2 f(x) \, dx$.
3 replies
Mathandski
Yesterday at 7:58 PM
ihategeo_1969
an hour ago
A cyclic inequality
KhuongTrang   4
N an hour ago by NguyenVanHoa29
Source: own-CRUX
IMAGE
https://cms.math.ca/.../uploads/2025/04/Wholeissue_51_4.pdf
4 replies
KhuongTrang
Apr 21, 2025
NguyenVanHoa29
an hour ago
Infinitely many n with a_n = n mod 2^2010 [USA TST 2010 5]
MellowMelon   14
N an hour ago by ihategeo_1969
Define the sequence $a_1, a_2, a_3, \ldots$ by $a_1 = 1$ and, for $n > 1$,
\[a_n = a_{\lfloor n/2 \rfloor} + a_{\lfloor n/3 \rfloor} + \ldots + a_{\lfloor n/n \rfloor} + 1.\]
Prove that there are infinitely many $n$ such that $a_n \equiv n \pmod{2^{2010}}$.
14 replies
MellowMelon
Jul 26, 2010
ihategeo_1969
an hour ago
Weird Line Passes Through Pole of Side
reni_wee   1
N an hour ago by ihategeo_1969
Source: LiOG Epsilon 12.3
Let $\triangle ABC$ be a triangle with orthic triangle $\triangle DEF$ and orthocenter $H$ and midpoint of $\overline{BC}$ as $M$. If $P=\overline{MH} \cap \overline{EF}$ then prove that $\overline{PD}$ passes through pole of $\overline{BC}$ wrt $(ABC)$.
1 reply
reni_wee
an hour ago
ihategeo_1969
an hour ago
Non-negative real variables inequality
KhuongTrang   2
N an hour ago by NguyenVanHoa29
Source: own
Problem. Let $a,b,c\ge 0: ab+bc+ca>0.$ Prove that$$\color{blue}{\frac{\left(2ab+ca+cb\right)^{2}}{a^{2}+4ab+b^{2}}+\frac{\left(2bc+ab+ac\right)^{2}}{b^{2}+4bc+c^{2}}+\frac{\left(2ca+bc+ba\right)^{2}}{c^{2}+4ca+a^{2}}\ge \frac{8(ab+bc+ca)}{3}.}$$
2 replies
KhuongTrang
Apr 24, 2025
NguyenVanHoa29
an hour ago
Something about (BIC)
flower417477   1
N an hour ago by flower417477
Given $\triangle ABC$ with incenter $I$,$D$ is a point on $BC$ ,the bisector of $\angle ADB$ meet $(BIC)$ at $E,F$.Prove that $\angle EAD=\angle IAF$
1 reply
1 viewing
flower417477
Yesterday at 3:58 PM
flower417477
an hour ago
IMO Shortlist 2009 - Problem N3
April   64
N an hour ago by sansgankrsngupta
Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$.

Proposed by Juhan Aru, Estonia
64 replies
April
Jul 5, 2010
sansgankrsngupta
an hour ago
a nice problem of nt from PUMaC
Namisgood   0
an hour ago
Source: PUMaC
Problem is attached
0 replies
Namisgood
an hour ago
0 replies
old and easy imo inequality
Valentin Vornicu   214
N an hour ago by ND_
Source: IMO 2000, Problem 2, IMO Shortlist 2000, A1
Let $ a, b, c$ be positive real numbers so that $ abc = 1$. Prove that
\[ \left( a - 1 + \frac 1b \right) \left( b - 1 + \frac 1c \right) \left( c - 1 + \frac 1a \right) \leq 1.
\]
214 replies
Valentin Vornicu
Oct 24, 2005
ND_
an hour ago
Area of octagon
mathisreal   1
N Feb 20, 2018 by MNJ2357
Source: May Olympiad (Olimpiada de Mayo) 2000
Given a parallelogram with area $1$ and we will construct lines where this lines connect a vertex with a midpoint of the side no adjacent to this vertex; with the $8$ lines formed we have a octagon inside of the parallelogram. Determine the area of this octagon
1 reply
mathisreal
Feb 20, 2018
MNJ2357
Feb 20, 2018
Area of octagon
G H J
G H BBookmark kLocked kLocked NReply
Source: May Olympiad (Olimpiada de Mayo) 2000
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathisreal
647 posts
#1 • 2 Y
Y by Adventure10, Mango247
Given a parallelogram with area $1$ and we will construct lines where this lines connect a vertex with a midpoint of the side no adjacent to this vertex; with the $8$ lines formed we have a octagon inside of the parallelogram. Determine the area of this octagon
This post has been edited 2 times. Last edited by mathisreal, Feb 20, 2018, 10:17 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MNJ2357
644 posts
#2 • 1 Y
Y by Adventure10
mathisreal wrote:
Given a parallelogram with area and we will construct lines where this lines connect a vertex with a midpoint of the side no adjacent to this vertex; with the lines formed we have a octagon inside of the parallelogram. Determine the area of this octagon
$\frac{1}{6}$
Z K Y
N Quick Reply
G
H
=
a