Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
Functional equation
tenplusten   9
N 5 minutes ago by Jakjjdm
Source: Bulgarian NMO 2015 P4
Find all functions $f:\mathbb{R^+}\to\mathbb {R^+} $ such that for all $x,y\in R^+$ the followings hold:
$i) $ $f (x+y)\ge f (x)+y $
$ii) $ $f (f (x))\le x $
9 replies
tenplusten
Apr 29, 2018
Jakjjdm
5 minutes ago
Prove DK and BC are perpendicular.
yunxiu   61
N 6 minutes ago by Avron
Source: 2012 European Girls’ Mathematical Olympiad P1
Let $ABC$ be a triangle with circumcentre $O$. The points $D,E,F$ lie in the interiors of the sides $BC,CA,AB$ respectively, such that $DE$ is perpendicular to $CO$ and $DF$ is perpendicular to $BO$. (By interior we mean, for example, that the point $D$ lies on the line $BC$ and $D$ is between $B$ and $C$ on that line.)
Let $K$ be the circumcentre of triangle $AFE$. Prove that the lines $DK$ and $BC$ are perpendicular.

Netherlands (Merlijn Staps)
61 replies
yunxiu
Apr 13, 2012
Avron
6 minutes ago
Number Theory Chain!
JetFire008   56
N 7 minutes ago by TestX01
I will post a question and someone has to answer it. Then they have to post a question and someone else will answer it and so on. We can only post questions related to Number Theory and each problem should be more difficult than the previous. Let's start!

Question 1
56 replies
JetFire008
Apr 7, 2025
TestX01
7 minutes ago
European Mathematical Cup 2016 senior division problem 1
steppewolf   11
N an hour ago by MuradSafarli
Is there a sequence $a_{1}, . . . , a_{2016}$ of positive integers, such that every sum
$$a_{r} + a_{r+1} + . . . + a_{s-1} + a_{s}$$(with $1 \le r \le s \le 2016$) is a composite number, but:
a) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$;
b) $GCD(a_{i}, a_{i+1}) = 1$ for all $i = 1, 2, . . . , 2015$ and $GCD(a_{i}, a_{i+2}) = 1$ for all $i = 1, 2, . . . , 2014$?
$GCD(x, y)$ denotes the greatest common divisor of $x$, $y$.

Proposed by Matija Bucić
11 replies
steppewolf
Dec 31, 2016
MuradSafarli
an hour ago
No more topics!
Show that point lies on bisector
mruczek   4
N Jul 31, 2023 by HamstPan38825
Source: 63 Polish MO 2012 Finals - Problem 3
Triangle $ABC$ with $AB = AC$ is inscribed in circle $o$. Circles $o_1$ and $o_2$ are internally tangent to circle $o$ in points $P$ and $Q$, respectively, and they are tangent to segments $AB$ and $AC$, respectively, and they are disjoint with the interior of triangle $ABC$. Let $m$ be a line tangent to circles $o_1$ and $o_2$, such that points $P$ and $Q$ lie on the opposite side than point $A$. Line $m$ cuts segments $AB$ and $AC$ in points $K$ and $L$, respectively. Prove, that intersection point of lines $PK$ and $QL$ lies on bisector of angle $BAC$.
4 replies
mruczek
Apr 23, 2018
HamstPan38825
Jul 31, 2023
Show that point lies on bisector
G H J
G H BBookmark kLocked kLocked NReply
Source: 63 Polish MO 2012 Finals - Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mruczek
67 posts
#1 • 3 Y
Y by Amir Hossein, Adventure10, Mango247
Triangle $ABC$ with $AB = AC$ is inscribed in circle $o$. Circles $o_1$ and $o_2$ are internally tangent to circle $o$ in points $P$ and $Q$, respectively, and they are tangent to segments $AB$ and $AC$, respectively, and they are disjoint with the interior of triangle $ABC$. Let $m$ be a line tangent to circles $o_1$ and $o_2$, such that points $P$ and $Q$ lie on the opposite side than point $A$. Line $m$ cuts segments $AB$ and $AC$ in points $K$ and $L$, respectively. Prove, that intersection point of lines $PK$ and $QL$ lies on bisector of angle $BAC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Seicchi28
252 posts
#2 • 4 Y
Y by Amir Hossein, ayamgabut, Adventure10, Mango247
mruczek wrote:
Triangle $ABC$ with $AB = AC$ is inscribed in circle $o$. Circles $o_1$ and $o_2$ are internally tangent to circle $o$ in points $P$ and $Q$, respectively, and they are tangent to segments $AB$ and $AC$, respectively, and they are disjoint with the interior of triangle $ABC$. Let $m$ be a line tangent to circles $o_1$ and $o_2$, such that points $P$ and $Q$ lie on the opposite side than point $A$. Line $m$ cuts segments $AB$ and $AC$ in points $K$ and $L$, respectively. Prove, that intersection point of lines $PK$ and $QL$ lies on bisector of angle $BAC$.

Let $o_3$ be the incircle of triangle $AKL$. Note that $K$ is the insimilicenter of circles $o_1$ and $o_3$ (since $K$ is the intersection of their common internal tangents). Note also that $P$ is the exsimilicenter of circles $o_1$ and $(ABC)$. So, by Monge d'Alembert we get that $PK$ passes through insimilicenter of $o_3$ and $(ABC)$. Similarly, $QL$ also passes through insimilicenter of $o_3$ and $(ABC)$. Since $AB=AC$, it can be seen that this point is located on bisector of angle $BAC$, so the conclusion follows.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yaghi
412 posts
#3 • 2 Y
Y by Adventure10, Mango247
Another way to do this is to note that $PQ,KL,o_1o_2$ are concurrent by Monge,so by Deasargue's theorem,$X=PK \cap QL ,O=Po_1 \cap Qo_2,Y=o_1K \cap o_2L$ are collinear,but $O,Y$ already lie on the angle bisector of $A$(they are respectively circumcenter of $(ABC)$ and incenter of $AKL$),so $X$ is also on the angle bisector.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SinaQane
198 posts
#4 • 1 Y
Y by Adventure10
Angle chasing and Trig Ceva in $\triangle AKL$ also works...
This post has been edited 1 time. Last edited by SinaQane, Mar 7, 2019, 4:51 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#5
Y by
This has a very nice solution by homothety. Relabel the circles as $\omega_b$, $\omega_c$, and $\Omega$, and consider the incircle $\omega$ of triangle $AKL$. Note that $\omega$ and $\omega_b$ are homothetic at $K$, and considering the similar case yields that $O = \overline{B'K} \cap \overline{C'L}$ is the homothety center between $\omega$ and $\Omega$. Then $O \in \overline{O_\omega O_\Omega}$, but this is precisely the $A$-bisector.
Z K Y
N Quick Reply
G
H
=
a