Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Consecutive squares are floors
ICE_CNME_4   11
N a few seconds ago by ICE_CNME_4

Determine how many positive integers \( n \) have the property that both
\[
\left\lfloor \sqrt{2n - 1} \right\rfloor \quad \text{and} \quad \left\lfloor \sqrt{3n + 2} \right\rfloor
\]are consecutive perfect squares.
11 replies
ICE_CNME_4
Yesterday at 1:50 PM
ICE_CNME_4
a few seconds ago
Finding all possible $n$ on a strange division condition!!
MathLuis   10
N 24 minutes ago by justaguy_69
Source: Bolivian Cono Sur Pre-TST 2021 P1
Find the sum of all positive integers $n$ such that
$$\frac{n+11}{\sqrt{n-1}}$$is an integer.
10 replies
MathLuis
Nov 12, 2021
justaguy_69
24 minutes ago
IMO 2012 P5
mathmdmb   123
N 32 minutes ago by SimplisticFormulas
Source: IMO 2012 P5
Let $ABC$ be a triangle with $\angle BCA=90^{\circ}$, and let $D$ be the foot of the altitude from $C$. Let $X$ be a point in the interior of the segment $CD$. Let $K$ be the point on the segment $AX$ such that $BK=BC$. Similarly, let $L$ be the point on the segment $BX$ such that $AL=AC$. Let $M$ be the point of intersection of $AL$ and $BK$.

Show that $MK=ML$.

Proposed by Josef Tkadlec, Czech Republic
123 replies
mathmdmb
Jul 11, 2012
SimplisticFormulas
32 minutes ago
Fixed line
TheUltimate123   14
N 34 minutes ago by amirhsz
Source: ELMO Shortlist 2023 G4
Let \(D\) be a point on segment \(PQ\). Let \(\omega\) be a fixed circle passing through \(D\), and let \(A\) be a variable point on \(\omega\). Let \(X\) be the intersection of the tangent to the circumcircle of \(\triangle ADP\) at \(P\) and the tangent to the circumcircle of \(\triangle ADQ\) at \(Q\). Show that as \(A\) varies, \(X\) lies on a fixed line.

Proposed by Elliott Liu and Anthony Wang
14 replies
TheUltimate123
Jun 29, 2023
amirhsz
34 minutes ago
Computing functions
BBNoDollar   7
N an hour ago by ICE_CNME_4
Let $f : [0, \infty) \to [0, \infty)$, $f(x) = \dfrac{ax + b}{cx + d}$, with $a, d \in (0, \infty)$, $b, c \in [0, \infty)$. Prove that there exists $n \in \mathbb{N}^*$ such that for every $x \geq 0$
\[
f_n(x) = \frac{x}{1 + nx}, \quad \text{if and only if } f(x) = \frac{x}{1 + x}, \quad \forall x \geq 0.
\](For $n \in \mathbb{N}^*$ and $x \geq 0$, the notation $f_n(x)$ represents $\underbrace{(f \circ f \circ \dots \circ f)}_{n \text{ times}}(x)$. )
7 replies
BBNoDollar
May 18, 2025
ICE_CNME_4
an hour ago
RMO 2024 Q2
SomeonecoolLovesMaths   14
N an hour ago by Adywastaken
Source: RMO 2024 Q2
For a positive integer $n$, let $R(n)$ be the sum of the remainders when $n$ is divided by $1,2, \cdots , n$. For example, $R(4) = 0 + 0 + 1 + 0 = 1,$ $R(7) = 0 + 1 + 1 + 3 + 2 + 1 + 0 = 8$. Find all positive integers such that $R(n) = n-1$.
14 replies
SomeonecoolLovesMaths
Nov 3, 2024
Adywastaken
an hour ago
Decimal functions in binary
Pranav1056   3
N an hour ago by ihategeo_1969
Source: India TST 2023 Day 3 P1
Let $\mathbb{N}$ be the set of all positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that $f(x) + y$ and $f(y) + x$ have the same number of $1$'s in their binary representations, for any $x,y \in \mathbb{N}$.
3 replies
Pranav1056
Jul 9, 2023
ihategeo_1969
an hour ago
Beautiful numbers in base b
v_Enhance   21
N an hour ago by Martin2001
Source: USEMO 2023, problem 1
A positive integer $n$ is called beautiful if, for every integer $4 \le b \le 10000$, the base-$b$ representation of $n$ contains the consecutive digits $2$, $0$, $2$, $3$ (in this order, from left to right). Determine whether the set of all beautiful integers is finite.

Oleg Kryzhanovsky
21 replies
v_Enhance
Oct 21, 2023
Martin2001
an hour ago
Polynomial method of moving points
MathHorse   6
N an hour ago by Potyka17
Two Hungarian math olympians achieved significant breakthroughs in the field of polynomial moving points. Their main results are summarised in the attached pdf. Check it out!
6 replies
MathHorse
Jun 30, 2023
Potyka17
an hour ago
Intertwined numbers
miiirz30   2
N 2 hours ago by Gausikaci
Source: 2025 Euler Olympiad, Round 2
Let a pair of positive integers $(n, m)$ that are relatively prime be called intertwined if among any two divisors of $n$ greater than $1$, there exists a divisor of $m$ and among any two divisors of $m$ greater than $1$, there exists a divisor of $n$. For example, pair $(63, 64)$ is intertwined.

a) Find the largest integer $k$ for which there exists an intertwined pair $(n, m)$ such that the product $nm$ is equal to the product of the first $k$ prime numbers.
b) Prove that there does not exist an intertwined pair $(n, m)$ such that the product $nm$ is the product of $2025$ distinct prime numbers.
c) Prove that there exists an intertwined pair $(n, m)$ such that the number of divisors of $n$ is greater than $2025$.

Proposed by Stijn Cambie, Belgium
2 replies
miiirz30
Yesterday at 10:12 AM
Gausikaci
2 hours ago
Geometry
shactal   0
2 hours ago
Two intersecting circles $C_1$ and $C_2$ have a common tangent that meets $C_1$ in $P$ and $C_2$ in $Q$. The two circles intersect at $M$ and $N$ where $N$ is closer to $PQ$ than $M$ . Line $PN$ meets circle $C_2$ a second time in $R$. Prove that $MQ$ bisects angle $\widehat{PMR}$.
0 replies
shactal
2 hours ago
0 replies
Inspired by 2025 KMO
sqing   1
N 2 hours ago by sqing
Source: Own
Let $ a,b,c,d  $ be real numbers satisfying $ a+b+c+d=0 $ and $ a^2+b^2+c^2+d^2= 6 .$ Prove that $$ -\frac{3}{4} \leq abcd\leq\frac{9}{4}$$Let $ a,b,c,d  $ be real numbers satisfying $ a+b+c+d=6 $ and $ a^2+b^2+c^2+d^2= 18 .$ Prove that $$ -\frac{9(2\sqrt{3}+3)}{4} \leq abcd\leq\frac{9(2\sqrt{3}-3)}{4}$$
1 reply
sqing
2 hours ago
sqing
2 hours ago
RMO 2024 Q1
SomeonecoolLovesMaths   25
N 2 hours ago by Adywastaken
Source: RMO 2024 Q1
Let $n>1$ be a positive integer. Call a rearrangement $a_1,a_2, \cdots , a_n$ of $1,2, \cdots , n$ nice if for every $k = 2,3, \cdots , n$, we have that $a_1 + a_2 + \cdots + a_k$ is not divisible by $k$.
(a) If $n>1$ is odd, prove that there is no nice arrangement of $1,2, \cdots , n$.
(b) If $n$ is even, find a nice arrangement of $1,2, \cdots , n$.
25 replies
SomeonecoolLovesMaths
Nov 3, 2024
Adywastaken
2 hours ago
4 variables
Nguyenhuyen_AG   10
N 2 hours ago by Butterfly
Let $a,\,b,\,c,\,d$ are non-negative real numbers and $0 \leqslant k \leqslant \frac{2}{\sqrt{3}}.$ Prove that
$$a^2+b^2+c^2+d^2+kabcd \geqslant k+4+(k+2)(a+b+c+d-4).$$hide
10 replies
Nguyenhuyen_AG
Dec 21, 2020
Butterfly
2 hours ago
Two parallels
jayme   1
N Aug 1, 2018 by Gryphos
Source: own
Dear Mathlinkers,

1. ABC a triangle
2. D the foot of the A-inner bissector
3. E the midpointAC
4. P the point of intersection of BE and AD
5. F the point of intersection of CP and AB
6. Pb the parallel to CF through B
7. M the point of intersection of Pb and DF
8. X the symmetric of B wrt AD.

Prove : MX is parallel to AB.

Sincerely
Jean-Louis
1 reply
jayme
Aug 1, 2018
Gryphos
Aug 1, 2018
Two parallels
G H J
G H BBookmark kLocked kLocked NReply
Source: own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jayme
9801 posts
#1 • 2 Y
Y by Adventure10, Mango247
Dear Mathlinkers,

1. ABC a triangle
2. D the foot of the A-inner bissector
3. E the midpointAC
4. P the point of intersection of BE and AD
5. F the point of intersection of CP and AB
6. Pb the parallel to CF through B
7. M the point of intersection of Pb and DF
8. X the symmetric of B wrt AD.

Prove : MX is parallel to AB.

Sincerely
Jean-Louis
This post has been edited 1 time. Last edited by jayme, Aug 1, 2018, 11:34 AM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Gryphos
1702 posts
#2 • 1 Y
Y by Adventure10
Solution
Z K Y
N Quick Reply
G
H
=
a