Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Inequality with a+b+c=3
Nguyenhuyen_AG   1
N 4 minutes ago by KhuongTrang
Let $a, \ b, \ c$ are non-negative real numbers such that $a+b+c=3.$ Prove that
\[a\sqrt{72b+2ca(81+11b)} + b\sqrt{72a+2bc(81+11a)} + c\sqrt{72c+2ab(81+11c)} \leqslant 48.\]hide
1 reply
Nguyenhuyen_AG
an hour ago
KhuongTrang
4 minutes ago
They copied their problem!
pokmui9909   10
N 4 minutes ago by quacksaysduck
Source: FKMO 2025 P1
Sequence $a_1, a_2, a_3, \cdots$ satisfies the following condition.

(Condition) For all positive integer $n$, $\sum_{k=1}^{n}\frac{1}{2}\left(1 - (-1)^{\left[\frac{n}{k}\right]}\right)a_k=1$ holds.

For a positive integer $m = 1001 \cdot 2^{2025}$, compute $a_m$.
10 replies
pokmui9909
Mar 29, 2025
quacksaysduck
4 minutes ago
Inequality with two conditions
MariusStanean   14
N 34 minutes ago by sqing
Source: BMO1986 - Selection Test
$x,y,z\in\Bbb{R},\;x+y+z=0, \;x^2+y^2+z^2=6$. Find $\max\{x^2y+y^2z+z^2x\}$.
14 replies
+1 w
MariusStanean
Jul 25, 2011
sqing
34 minutes ago
Mock 22nd Thailand TMO P1
korncrazy   4
N 38 minutes ago by sqing
Source: Own, Folklore
Let $a,b,c$ be real numbers such that $a+b+c=0$ and $a^2+b^2+c^2=2$. Find the largest possible value of $abc$.
4 replies
1 viewing
korncrazy
Yesterday at 6:51 PM
sqing
38 minutes ago
All heads to tails?
smartvong   1
N an hour ago by smartvong
Source: CEMC Euclid Contest 2025
An equilateral triangle is formed using $n$ rows of coins. There is 1 coin in the first row, 2 coins in the second row, 3 coins in the third row, and so on, up to $n$ coins in the $n$th row. Initially, all of the coins show heads (H). Carley plays a game in which, on each turn, she chooses three mutually adjacent coins and flips these three coins over. To win the game, all of the coins must be showing tails (T) after a sequence of turns. An example game with 4 rows of coins after a sequence of two turns is shown.

IMAGE

Below (a), (b) and (c), you will find instructions about how to refer to these turns in your solutions.

(a) If there are 3 rows of coins, give a sequence of 4 turns that results in a win.

(b) Suppose that there are 4 rows of coins. Determine whether or not there is a sequence of turns that results in a win.

(c) Determine all values of $n$ for which it is possible to win the game starting with $n$ rows of coins.

Note: For a triangle with 4 rows of coins, there are 9 possibilities for the set of three coins that Carley can flip on a given turn. These 9 possibilities are shown as shaded triangles below:

IMAGE

IMAGE

[You should use the names for these moves shown inside the 9 shaded triangles when answering (b). You should adapt this naming convention in a suitable way when answering parts (a) and (c).]
1 reply
smartvong
Apr 5, 2025
smartvong
an hour ago
x^m-y^n irreducible when (m,n)=1
math154   13
N an hour ago by Nerofather
Source: ELMO Shortlist 2012, A5
Prove that if $m,n$ are relatively prime positive integers, $x^m-y^n$ is irreducible in the complex numbers. (A polynomial $P(x,y)$ is irreducible if there do not exist nonconstant polynomials $f(x,y)$ and $g(x,y)$ such that $P(x,y) = f(x,y)g(x,y)$ for all $x,y$.)

David Yang.
13 replies
+1 w
math154
Jul 2, 2012
Nerofather
an hour ago
2021 EGMO P3: E, F, N, M lie on a circle
anser   48
N an hour ago by Ilikeminecraft
Source: 2021 EGMO P3
Let $ABC$ be a triangle with an obtuse angle at $A$. Let $E$ and $F$ be the intersections of the external bisector of angle $A$ with the altitudes of $ABC$ through $B$ and $C$ respectively. Let $M$ and $N$ be the points on the segments $EC$ and $FB$ respectively such that $\angle EMA = \angle BCA$ and $\angle ANF = \angle ABC$. Prove that the points $E, F, N, M$ lie on a circle.
48 replies
anser
Apr 13, 2021
Ilikeminecraft
an hour ago
symmetric R to R FE
a_507_bc   3
N an hour ago by jasperE3
Source: Austria MO Final round 2023 P1
Given is a nonzero real number $\alpha$. Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that
$$f(f(x+y))=f(x+y)+f(x)f(y)+\alpha xy$$for all $x, y \in \mathbb{R}$.
3 replies
a_507_bc
May 27, 2023
jasperE3
an hour ago
Inspired by A_E_R
sqing   1
N an hour ago by sqing
Source: Own
Let $ a,b,c,d>0 $ and $ a(b^2+c^2)\geq 4bcd.$ Prove that$$ (a^2+b^2+c^2+d^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2})\geq\frac{84}{4}$$Let $ a,b,c,d>0 $ and $ a(b^2+c^2)\geq 3bcd.$ Prove that$$ (a^2+b^2+c^2+d^2)(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2})\geq\frac{625}{36}$$
1 reply
sqing
Yesterday at 12:18 PM
sqing
an hour ago
pairwise coprime sum gcd
InterLoop   25
N 2 hours ago by vsamc
Source: EGMO 2025/1
For a positive integer $N$, let $c_1 < c_2 < \dots < c_m$ be all the positive integers smaller than $N$ that are coprime to $N$. Find all $N \ge 3$ such that
$$\gcd(N, c_i + c_{i+1}) \neq 1$$for all $1 \le i \le m - 1$.
25 replies
InterLoop
Yesterday at 12:34 PM
vsamc
2 hours ago
IMO 2016 Problem 2
shinichiman   63
N 2 hours ago by gladIasked
Source: IMO 2016 Problem 2
Find all integers $n$ for which each cell of $n \times n$ table can be filled with one of the letters $I,M$ and $O$ in such a way that:
[LIST]
[*] in each row and each column, one third of the entries are $I$, one third are $M$ and one third are $O$; and [/*]
[*]in any diagonal, if the number of entries on the diagonal is a multiple of three, then one third of the entries are $I$, one third are $M$ and one third are $O$.[/*]
[/LIST]
Note. The rows and columns of an $n \times n$ table are each labelled $1$ to $n$ in a natural order. Thus each cell corresponds to a pair of positive integer $(i,j)$ with $1 \le i,j \le n$. For $n>1$, the table has $4n-2$ diagonals of two types. A diagonal of first type consists all cells $(i,j)$ for which $i+j$ is a constant, and the diagonal of this second type consists all cells $(i,j)$ for which $i-j$ is constant.
63 replies
shinichiman
Jul 11, 2016
gladIasked
2 hours ago
IMO ShortList 2001, combinatorics problem 2
orl   58
N 2 hours ago by gladIasked
Source: IMO ShortList 2001, combinatorics problem 2
Let $n$ be an odd integer greater than 1 and let $c_1, c_2, \ldots, c_n$ be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1,2,\ldots,n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1,2,\ldots,n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.
58 replies
orl
Sep 30, 2004
gladIasked
2 hours ago
Arranging beads around a necklace; no three labls in a row form a triangle
Ritwin   15
N 2 hours ago by gladIasked
Source: BAMO 2023/4
Zaineb makes a large necklace from beads labeled $290, 291, \ldots, 2023$. She uses each bead exactly once, arranging the beads in the necklace any order she likes. Prove that no matter how the beads are arranged, there must be three beads in a row whose labels are the side lengths of a triangle.
15 replies
Ritwin
Mar 3, 2023
gladIasked
2 hours ago
11 students in a test, for any 2 qestions exactly 6 solved 1 correctly
parmenides51   22
N 2 hours ago by gladIasked
Source: KJMO 2005 p4
$11$ students take a test. For any two question in a test, there are at least $6$ students who solved exactly one of those two questions. Prove that there are no more than $12$ questions in this test. Showing the equality case is not needed.
22 replies
parmenides51
May 1, 2019
gladIasked
2 hours ago
minimum distance of a walk of an ant on a specific pyramid
parmenides51   2
N Nov 16, 2024 by FairyBlade
Source: May Olympiad (Olimpiada de Mayo) 1995 L2
Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?
2 replies
parmenides51
Sep 12, 2018
FairyBlade
Nov 16, 2024
minimum distance of a walk of an ant on a specific pyramid
G H J
G H BBookmark kLocked kLocked NReply
Source: May Olympiad (Olimpiada de Mayo) 1995 L2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30630 posts
#1 • 2 Y
Y by Adventure10, Mango247
Consider a pyramid whose base is an equilateral triangle $BCD$ and whose other faces are triangles isosceles, right at the common vertex $A$. An ant leaves the vertex $B$ arrives at a point $P$ of the $CD$ edge, from there goes to a point $Q$ of the edge $AC$ and returns to point $B$. If the path you made is minimal, how much is the angle $PQA$ ?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ythomashu
6322 posts
#2 • 3 Y
Y by Adventure10, Mango247, FairyBlade
the answer is $120^{\circ}$ just unfold it
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
FairyBlade
55 posts
#3
Y by
Yes, if you unfold (and have two B in the figure you get triangle BCB isosceles so BCB=150, and so CBB=15, BCA=105, and so 120
Z K Y
N Quick Reply
G
H
=
a