We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Peer-to-Peer Programs Forum
jwelsh   157
N Dec 11, 2023 by cw357
Many of our AoPS Community members share their knowledge with their peers in a variety of ways, ranging from creating mock contests to creating real contests to writing handouts to hosting sessions as part of our partnership with schoolhouse.world.

To facilitate students in these efforts, we have created a new Peer-to-Peer Programs forum. With the creation of this forum, we are starting a new process for those of you who want to advertise your efforts. These advertisements and ensuing discussions have been cluttering up some of the forums that were meant for other purposes, so we’re gathering these topics in one place. This also allows students to find new peer-to-peer learning opportunities without having to poke around all the other forums.

To announce your program, or to invite others to work with you on it, here’s what to do:

1) Post a new topic in the Peer-to-Peer Programs forum. This will be the discussion thread for your program.

2) Post a single brief post in this thread that links the discussion thread of your program in the Peer-to-Peer Programs forum.

Please note that we’ll move or delete any future advertisement posts that are outside the Peer-to-Peer Programs forum, as well as any posts in this topic that are not brief announcements of new opportunities. In particular, this topic should not be used to discuss specific programs; those discussions should occur in topics in the Peer-to-Peer Programs forum.

Your post in this thread should have what you're sharing (class, session, tutoring, handout, math or coding game/other program) and a link to the thread in the Peer-to-Peer Programs forum, which should have more information (like where to find what you're sharing).
157 replies
jwelsh
Mar 15, 2021
cw357
Dec 11, 2023
k i C&P posting recs by mods
v_Enhance   0
Jun 12, 2020
The purpose of this post is to lay out a few suggestions about what kind of posts work well for the C&P forum. Except in a few cases these are mostly meant to be "suggestions based on historical trends" rather than firm hard rules; we may eventually replace this with an actual list of firm rules but that requires admin approval :) That said, if you post something in the "discouraged" category, you should not be totally surprised if it gets locked; they are discouraged exactly because past experience shows they tend to go badly.
-----------------------------
1. Program discussion: Allowed
If you have questions about specific camps or programs (e.g. which classes are good at X camp?), these questions fit well here. Many camps/programs have specific sub-forums too but we understand a lot of them are not active.
-----------------------------
2. Results discussion: Allowed
You can make threads about e.g. how you did on contests (including AMC), though on AMC day when there is a lot of discussion. Moderators and administrators may do a lot of thread-merging / forum-wrangling to keep things in one place.
-----------------------------
3. Reposting solutions or questions to past AMC/AIME/USAMO problems: Allowed
This forum contains a post for nearly every problem from AMC8, AMC10, AMC12, AIME, USAJMO, USAMO (and these links give you an index of all these posts). It is always permitted to post a full solution to any problem in its own thread (linked above), regardless of how old the problem is, and even if this solution is similar to one that has already been posted. We encourage this type of posting because it is helpful for the user to explain their solution in full to an audience, and for future users who want to see multiple approaches to a problem or even just the frequency distribution of common approaches. We do ask for some explanation; if you just post "the answer is (B); ez" then you are not adding anything useful.

You are also encouraged to post questions about a specific problem in the specific thread for that problem, or about previous user's solutions. It's almost always better to use the existing thread than to start a new one, to keep all the discussion in one place easily searchable for future visitors.
-----------------------------
4. Advice posts: Allowed, but read below first
You can use this forum to ask for advice about how to prepare for math competitions in general. But you should be aware that this question has been asked many many times. Before making a post, you are encouraged to look at the following:
[list]
[*] Stop looking for the right training: A generic post about advice that keeps getting stickied :)
[*] There is an enormous list of links on the Wiki of books / problems / etc for all levels.
[/list]
When you do post, we really encourage you to be as specific as possible in your question. Tell us about your background, what you've tried already, etc.

Actually, the absolute best way to get a helpful response is to take a few examples of problems that you tried to solve but couldn't, and explain what you tried on them / why you couldn't solve them. Here is a great example of a specific question.
-----------------------------
5. Publicity: use P2P forum instead
See https://artofproblemsolving.com/community/c5h2489297_peertopeer_programs_forum.
Some exceptions have been allowed in the past, but these require approval from administrators. (I am not totally sure what the criteria is. I am not an administrator.)
-----------------------------
6. Mock contests: use Mock Contests forum instead
Mock contests should be posted in the dedicated forum instead:
https://artofproblemsolving.com/community/c594864_aops_mock_contests
-----------------------------
7. AMC procedural questions: suggest to contact the AMC HQ instead
If you have a question like "how do I submit a change of venue form for the AIME" or "why is my name not on the qualifiers list even though I have a 300 index", you would be better off calling or emailing the AMC program to ask, they are the ones who can help you :)
-----------------------------
8. Discussion of random math problems: suggest to use MSM/HSM/HSO instead
If you are discussing a specific math problem that isn't from the AMC/AIME/USAMO, it's better to post these in Middle School Math, High School Math, High School Olympiads instead.
-----------------------------
9. Politics: suggest to use Round Table instead
There are important conversations to be had about things like gender diversity in math contests, etc., for sure. However, from experience we think that C&P is historically not a good place to have these conversations, as they go off the rails very quickly. We encourage you to use the Round Table instead, where it is much more clear that all posts need to be serious.
-----------------------------
10. MAA complaints: discouraged
We don't want to pretend that the MAA is perfect or that we agree with everything they do. However, we chose to discourage this sort of behavior because in practice most of the comments we see are not useful and some are frankly offensive.
[list] [*] If you just want to blow off steam, do it on your blog instead.
[*] When you have criticism, it should be reasoned, well-thought and constructive. What we mean by this is, for example, when the AOIME was announced, there was great outrage about potential cheating. Well, do you really think that this is something the organizers didn't think about too? Simply posting that "people will cheat and steal my USAMOO qualification, the MAA are idiots!" is not helpful as it is not bringing any new information to the table.
[*] Even if you do have reasoned, well-thought, constructive criticism, we think it is actually better to email it the MAA instead, rather than post it here. Experience shows that even polite, well-meaning suggestions posted in C&P are often derailed by less mature users who insist on complaining about everything.
[/list]
-----------------------------
11. Memes and joke posts: discouraged
It's fine to make jokes or lighthearted posts every so often. But it should be done with discretion. Ideally, jokes should be done within a longer post that has other content. For example, in my response to one user's question about olympiad combinatorics, I used a silly picture of Sogiita Gunha, but it was done within a context of a much longer post where it was meant to actually make a point.

On the other hand, there are many threads which consist largely of posts whose only content is an attached meme with the word "MAA" in it. When done in excess like this, the jokes reflect poorly on the community, so we explicitly discourage them.
-----------------------------
12. Questions that no one can answer: discouraged
Examples of this: "will MIT ask for AOIME scores?", "what will the AIME 2021 cutoffs be (asked in 2020)", etc. Basically, if you ask a question on this forum, it's better if the question is something that a user can plausibly answer :)
-----------------------------
13. Blind speculation: discouraged
Along these lines, if you do see a question that you don't have an answer to, we discourage "blindly guessing" as it leads to spreading of baseless rumors. For example, if you see some user posting "why are there fewer qualifiers than usual this year?", you should not reply "the MAA must have been worried about online cheating so they took fewer people!!". Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.
-----------------------------
14. Discussion of cheating: strongly discouraged
If you have evidence or reasonable suspicion of cheating, please report this to your Competition Manager or to the AMC HQ; these forums cannot help you.
Otherwise, please avoid public discussion of cheating. That is: no discussion of methods of cheating, no speculation about how cheating affects cutoffs, and so on --- it is not helpful to anyone, and it creates a sour atmosphere. A longer explanation is given in Seriously, please stop discussing how to cheat.
-----------------------------
15. Cutoff jokes: never allowed
Whenever the cutoffs for any major contest are released, it is very obvious when they are official. In the past, this has been achieved by the numbers being posted on the official AMC website (here) or through a post from the AMCDirector account.

You must never post fake cutoffs, even as a joke. You should also refrain from posting cutoffs that you've heard of via email, etc., because it is better to wait for the obvious official announcement. A longer explanation is given in A Treatise on Cutoff Trolling.
-----------------------------
16. Meanness: never allowed
Being mean is worse than being immature and unproductive. If another user does something which you think is inappropriate, use the Report button to bring the post to moderator attention, or if you really must reply, do so in a way that is tactful and constructive rather than inflammatory.
-----------------------------

Finally, we remind you all to sit back and enjoy the problems. :D

-----------------------------
(EDIT 2024-09-13: AoPS has asked to me to add the following item.)

Advertising paid program or service: never allowed

Per the AoPS Terms of Service (rule 5h), general advertisements are not allowed.

While we do allow advertisements of official contests (at the MAA and MATHCOUNTS level) and those run by college students with at least one successful year, any and all advertisements of a paid service or program is not allowed and will be deleted.
0 replies
v_Enhance
Jun 12, 2020
0 replies
k i Stop looking for the "right" training
v_Enhance   50
N Oct 16, 2017 by blawho12
Source: Contest advice
EDIT 2019-02-01: https://blog.evanchen.cc/2019/01/31/math-contest-platitudes-v3/ is the updated version of this.

EDIT 2021-06-09: see also https://web.evanchen.cc/faq-contest.html.

Original 2013 post
50 replies
v_Enhance
Feb 15, 2013
blawho12
Oct 16, 2017
Minimize this in any way you like
Assassino9931   2
N 5 minutes ago by p.lazarov06
Source: Bulgaria Spring Mathematical Competition 2025 12.1
In terms of the real numbers $a$ and $b$ determine the minimum value of $$ \sqrt{(x+a)^2+1}+\sqrt{(x+1-a)^2+1}+\sqrt{(x+b)^2+1}+\sqrt{(x+1-b)^2+1}$$as well as all values of $x$ which attain it.
2 replies
Assassino9931
an hour ago
p.lazarov06
5 minutes ago
Very hard FE problem
steven_zhang123   0
15 minutes ago
Source: 0
Given a real number \(C\) such that \(x + y + z = C\) (where \(x, y, z \in \mathbb{R}\)), and a functional equation \(f: \mathbb{R} \rightarrow \mathbb{R}\) that satisfies \((f^x(y) + f^y(z) + f^z(x))((f(x))^y + (f(y))^z + (f(z))^x) \geq 2025\) for all \(x, y, z \in \mathbb{R}\), has a finite number of solutions. Find such \(C\).
(Here, $f^{n}(x)$ is the function obtained by composing $f(x)$ $n$ times, that is, $(\underbrace{f \circ f \circ \cdots \circ f}_{n \ \text{times}})(x).$)
0 replies
steven_zhang123
15 minutes ago
0 replies
Train yourself on folklore NT FE ideas
Assassino9931   1
N 19 minutes ago by bin_sherlo
Source: Bulgaria Spring Mathematical Competition 2025 9.4
Determine all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f(a) + 2ab + 2f(b)$ divides $f(a)^2 + 4f(b)^2$ for any positive integers $a$ and $b$.
1 reply
1 viewing
Assassino9931
an hour ago
bin_sherlo
19 minutes ago
FE f(x)f(y)+1=f(x+y)+f(xy)+xy(x+y-2)
steven_zhang123   4
N 33 minutes ago by steven_zhang123
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x,y \in \mathbb{R}$, we have $f(x)f(y)+1=f(x+y)+f(xy)+xy(x+y-2)$.
4 replies
steven_zhang123
Yesterday at 11:27 PM
steven_zhang123
33 minutes ago
Practice AMC 10A
freddyfazbear   59
N Today at 5:27 AM by Andrew2019
Practice AMC 10A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Caden’s calculator is broken and two of the digits are swapped for some reason. When he entered in 9 + 10, he got 21. What is the sum of the two digits that got swapped?
A - 2, B - 3, C - 4, D - 5, E - 6

4. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

5. Two dice are rolled, and the two numbers shown are a and b. How many possible values of ab are there?
A - 17, B - 18, C - 19, D - 20, E - 21

6. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

7. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

8. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

9. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

10. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

11. Suppose that on the coordinate grid, the x-axis represents climate, and the y-axis represents landscape, where -1 <= x, y <= 1 and a higher number for either coordinate represents better conditions along that particular axis. Accordingly, the points (0, 0), (1, 1), (-1, 1), (-1, -1), and (1, -1) represent cities, plains, desert, snowy lands, and mountains, respectively. An area is classified as whichever point it is closest to. Suppose a theoretical new area is selected by picking a random point within the square bounded by plains, desert, snowy lands, and mountains as its vertices. What is the probability that it is a plains?
A - 1 - (1/4)pi, B - 1/5, C - (1/16)pi, D - 1/4, E - 1/8

12. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

13. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

14. Find the number of positive integers n less than 69 such that the average of all the squares from 1^2 to n^2, inclusive, is an integer.
A - 11, B - 12, C - 23, D - 24, E - 48

15. Find the number of ordered pairs (a, b) of integers such that (a - b)^2 = 625 - 2ab.
A - 6, B - 10, C - 12, D - 16, E - 20

16. What is the 420th digit after the decimal point in the decimal expansion of 1/13?
A - 4, B - 5, C - 6, D - 7, E - 8

17. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

18. What is the greatest number of positive integer factors an integer from 1 to 100 can have?
A - 10, B - 12, C - 14, D - 15, E - 16

19. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

20. Find the smallest positive integer that is a leg in three different Pythagorean triples.
A - 12, B - 14, C - 15, D - 20, E - 21

21. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

22. Real numbers a, b, and c are chosen uniformly and at random from 0 to 3. Find the probability that a + b + c is less than 2.
A - 4/81, B - 8/81, C - 4/27, D - 8/27, E - 2/3

23. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

24. Find the last three digits of 24^10.
A - 376, B - 576, C - 626, D - 876, E - 926

25. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8
59 replies
freddyfazbear
Mar 24, 2025
Andrew2019
Today at 5:27 AM
PROM^2 for Girls 2025
mathisfun17   18
N Today at 5:22 AM by mpcnotnpc
Hi everyone!

The Princeton International School of Math and Science (PRISMS) Math Team is delighted that $PROM^2$ for Girls, PRISMS Online Math Meet for Girls, is happening this spring! https://www.prismsus.org/events/prom/home/index

We warmly invite all middle school girls to join us! This is a fantastic opportunity for young girls to connect with others interested in math as well as prepare for future math contests.

This contest will take place online from 12:00 pm to 3:00 pm EST on Saturday, April 26th, 2025.

The competition will include a team and individual round as well as activities like origami. You can see a detailed schedule here. https://prismsus.org/events/prom/experience/schedule.

Registration is FREE, there are cash prizes for participants who place in the top 10 and cool gifts for all participants.

1st place individual: $500 cash
2nd place individual: $300 cash
3rd place individual: $100 cash
4th-10th place individual: $50 cash each

Some FAQs:
Q: How difficult are the questions?
A: The problem difficulty is around AMC 8 or Mathcounts level.

Q: Are there any example problems?
A: You can find some archived here: https://www.prismsus.org/events/prom/achieve/achieve

Registration is open now. https://www.prismsus.org/events/prom/register/register. Email us at prom2@prismsus.org with any questions.

The PRISMS Peregrines Math Team welcomes you!
18 replies
mathisfun17
Feb 22, 2025
mpcnotnpc
Today at 5:22 AM
MAA finally wrote sum good number theory
IAmTheHazard   95
N Today at 5:19 AM by Magnetoninja
Source: 2021 AIME I P14
For any positive integer $a,$ $\sigma(a)$ denotes the sum of the positive integer divisors of $a.$ Let $n$ be the least positive integer such that $\sigma(a^n)-1$ is divisible by $2021$ for all positive integers $a.$ Find the sum of the prime factors in the prime factorization of $n.$
95 replies
IAmTheHazard
Mar 11, 2021
Magnetoninja
Today at 5:19 AM
Practice AMC 12A
freddyfazbear   50
N Today at 4:54 AM by fake123
Practice AMC 12A

1. Find the sum of the infinite geometric series 1 + 7/18 + 49/324 + …
A - 36/11, B - 9/22, C - 18/11, D - 18/7, E - 9/14

2. What is the first digit after the decimal point in the square root of 420?
A - 1, B - 2, C - 3, D - 4, E - 5

3. Two circles with radiuses 47 and 96 intersect at two points A and B. Let P be the point 82% of the way from A to B. A line is drawn through P that intersects both circles twice. Let the four intersection points, from left to right be W, X, Y, and Z. Find (PW/PX)*(PY/PZ).
A - 50/5863, B - 47/96, C - 1, D - 96/47, E - 5863/50

4. What is the largest positive integer that cannot be expressed in the form 6a + 9b + 4 + 20d, where a, b, and d are positive integers?
A - 29, B - 38, C - 43, D - 76, E - 82

5. What is the absolute difference of the probabilities of getting at least 6/10 on a 10-question true or false test and at least 3/5 on a 5-question true or false test?
A - 63/1024, B - 63/512, C - 63/256, D - 63/128, E - 0

6. How many arrangements of the letters in the word “sensor” are there such that the two vowels have an even number of letters (remember 0 is even) between them (including the original “sensor”)?
A - 72, B - 108, C - 144, D - 216, E - 432

7. Find the value of 0.9 * 0.97 + 0.5 * 0.1 * (0.5 * 0.97 + 0.5 * 0.2) rounded to the nearest tenth of a percent.
A - 89.9%, B - 90.0%, C - 90.1%, D - 90.2%, E - 90.3%

8. Two painters are painting a room. Painter 1 takes 52:36 to paint the room, and painter 2 takes 26:18 to paint the room. With these two painters working together, how long should the job take?
A - 9:16, B - 10:52, C - 17:32, D - 35:02, E - 39:44

9. Statistics show that people who work out n days a week have a (1/10)(n+2) chance of getting a 6-pack, and the number of people who exercise n days a week is directly proportional to 8 - n (Note that n can only be an integer from 0 to 7, inclusive). A random person is selected. Find the probability that they have a 6-pack.
A - 13/30, B - 17/30, C - 19/30, D - 23/30, E - 29/30

10. A factory must produce 3,000 items today. The manager of the factory initially calls over 25 employees, each producing 5 items per hour starting at 9 AM. However, he needs all of the items to be produced by 9 PM, and realizes that he must speed up the process. At 12 PM, the manager then encourages his employees to work faster by increasing their pay, in which they then all speed up to 6 items per hour. At 1 PM, the manager calls in 15 more employees which make 5 items per hour each. Unfortunately, at 3 PM, the AC stops working and the hot sun starts taking its toll, which slows every employee down by 2 items per hour. At 4 PM, the technician fixes the AC, and all employees return to producing 5 items per hour. At 5 PM, the manager calls in 30 more employees, which again make 5 items per hour. At 6 PM, he calls in 30 more employees. At 7 PM, he rewards all the pickers again, speeding them up to 6 items per hour. But at 8 PM, n employees suddenly crash out and stop working due to fatigue, and the rest all slow back down to 5 items per hour because they are tired. The manager does not have any more employees, so if too many of them drop out, he is screwed and will have to go overtime. Find the maximum value of n such that all of the items can still be produced on time, done no later than 9 PM.
A - 51, B - 52, C - 53, D - 54, E - 55

11. Two congruent right rectangular prisms stand near each other. Both have the same orientation and altitude. A plane that cuts both prisms into two pieces passes through the vertical axes of symmetry of both prisms and does not cross the bottom or top faces of either prism. Let the point that the plane crosses the axis of symmetry of the first prism be A, and the point that the plane crosses the axis of symmetry of the second prism be B. A is 81% of the way from the bottom face to the top face of the first prism, and B is 69% of the way from the bottom face to the top face of the second prism. What percent of the total volume of both prisms combined is above the plane?
A - 19%, B - 25%, C - 50%, D - 75%, E - 81%

12. On an analog clock, the minute hand makes one full revolution every hour, and the hour hand makes one full revolution every 12 hours. Both hands move at a constant rate. During which of the following time periods does the minute hand pass the hour hand?
A - 7:35 - 7:36, B - 7:36 - 7:37, C - 7:37 - 7:38, D - 7:38 - 7:39, E - 7:39 - 7:40

13. How many axes of symmetry does the graph of (x^2)(y^2) = 69 have?
A - 2, B - 3, C - 4, D - 5, E - 6

14. Let f(n) be the sum of the positive integer divisors of n. Find the sum of the digits of the smallest odd positive integer n such that f(n) is greater than 2n.
A - 15, B - 18, C - 21, D - 24, E - 27

15. A basketball has a diameter of 9 inches, and the hoop has a diameter of 18 inches. Peter decides to pick up the basketball and make a throw. Given that Peter has a 1/4 chance of accidentally hitting the backboard and missing the shot, but if he doesn’t, he is guaranteed that the frontmost point of the basketball will be within 18 inches of the center of the hoop at the moment when a great circle of the basketball crosses the plane containing the rim. No part of the ball will extend behind the backboard at any point during the throw, and the rim is attached directly to the backboard. What is the probability that Peter makes the shot?
A - 3/128, B - 3/64, C - 3/32, D - 3/16, E - 3/8

16. Amy purchases 6 fruits from a store. At the store, they have 5 of each of 5 different fruits. How many different combinations of fruits could Amy buy?
A - 210, B - 205, C - 195, D - 185, E - 180

17. Find the area of a cyclic quadrilateral with side lengths 6, 9, 4, and 2, rounded to the nearest integer.
A - 16, B - 19, C - 22, D - 25, E - 28

18. Find the slope of the line tangent to the graph of y = x^2 + x + 1 at the point (2, 7).
A - 2, B - 3, C - 4, D - 5, E - 6

19. Let f(n) = 4096n/(2^n). Find f(1) + f(2) + … + f(12).
A - 8142, B - 8155, C - 8162, D - 8169, E - 8178

20. Find the sum of all positive integers n greater than 1 and less than 16 such that (n-1)! + 1 is divisible by n.
A - 41, B - 44, C - 47, D - 50, E - 53

21. In a list of integers where every integer in the list ranges from 1 to 200, inclusive, and the chance of randomly drawing an integer n from the list is proportional to n if n <= 100 and to 201 - n if n >= 101, what is the sum of the numerator and denominator of the probability that a random integer drawn from the list is greater than 30, when expressed as a common fraction in lowest terms?
A - 1927, B - 2020, C - 2025, D - 3947, E - 3952

22. In a small town, there were initially 9 people who did not have a certain bacteria and 3 people who did. Denote this group to be the first generation. Then those 12 people would randomly get into 6 pairs and reproduce, making the second generation, consisting of 6 people. Then the process repeats for the second generation, where they get into 3 pairs. Of the 3 people in the third generation, what is the probability that exactly one of them does not have the bacteria? Assume that if at least one parent has the bacteria, then the child is guaranteed to get it.
A - 8/27, B - 1/3, C - 52/135, D - 11/27, E - 58/135

23. Amy, Steven, and Melissa each start at the point (0, 0). Assume the coordinate axes are in miles. At t = 0, Amy starts walking along the x-axis in the positive x direction at 0.6 miles per hour, Steven starts walking along the y-axis in the positive y direction at 0.8 miles per hour, and Melissa starts walking along the x-axis in the negative x direction at 0.4 miles per hour. However, a club that does not like them patrols the circumference of the circle x^2 + y^2 = 1. Three officers of the club, equally spaced apart on the circumference of the circle, walk counterclockwise along its circumference and make one revolution every hour. At t = 0, one of the officers of the club is at (1, 0). Any of Amy, Steven, and Melissa will be caught by the club if they walk within 50 meters of one of their 3 officers. How many of the three will be caught by the club?
A - 0, B - 1, C - 2, D - 3, E - Not enough info to determine

24.
A list of 9 positive integers consists of 100, 112, 122, 142, 152, and 160, as well as a, b, and c, with a <= b <= c. The range of the list is 70, both the mean and median are multiples of 10, and the list has a unique mode. How many ordered triples (a, b, c) are possible?
A - 1, B - 2, C - 3, D - 4, E - 5

25. What is the integer closest to the value of tan(83)? (The 83 is in degrees)
A - 2, B - 3, C - 4, D - 6, E - 8
50 replies
freddyfazbear
Mar 28, 2025
fake123
Today at 4:54 AM
AMC 10/AIME Study Forum
PatTheKing806   84
N Today at 4:22 AM by wittyellie
[center]

Me (PatTheKing806) and EaZ_Shadow have created a AMC 10/AIME Study Forum! Hopefully, this forum wont die quickly. To signup, do /join or \join.

Click here to join! (or do some pushups) :P

People should join this forum if they are wanting to do well on the AMC 10 next year, trying get into AIME, or loves math!
84 replies
PatTheKing806
Mar 27, 2025
wittyellie
Today at 4:22 AM
hcssim application question
enya_yurself   7
N Today at 3:45 AM by akliu
do they send the Interesting Test to everyone who applied or do they read the friendly letter first and only send to the kids they like?
7 replies
enya_yurself
Mar 17, 2025
akliu
Today at 3:45 AM
[Registration Open] Gunn Math Competition is BACK!!!
the_math_prodigy   18
N Today at 3:08 AM by ninjaforce
Source: compete.gunnmathcircle.org
IMAGE

UPDATE! We now offer GMC online as hosted on MathDash! Visit our https://mathdash.com/channel/gmc-7vuxi for more info!

Gunn Math Competition will take place at Gunn High School in Palo Alto, California on THIS Sunday, March 30th. Gather a team of up to four and compete for over $7,500 in prizes! The deadline to sign up is March 27th. We welcome participants of all skill levels, with separate Beginner and Advanced (AIME) divisions for all students, from advanced 4th graders to 12th graders.

For more information, check our MathDash Channel, [url][/url]https://mathdash.com/channel/gmc-7vuxi, where registration is free and now open. The deadline to sign up is this Friday, March 28th. If you are unable to make a team, register as an individual and we will be able to create teams for you.

Special Guest Speaker: Po-Shen LohIMAGE
We are honored to welcome Po-Shen Loh, a world-renowned mathematician, Carnegie Mellon professor, and former coach of the USA International Math Olympiad team. He will deliver a several 30-minute talks to both students and parents, offering deep insights into mathematical thinking and problem-solving in the age of AI!

For any questions, reach out at ghsmathcircle@gmail.com or ask in our Discord server, which you can join through the website.

Find information on our AoPS page too! https://artofproblemsolving.com/wiki/index.php/Gunn_Math_Competition_(GMC)
Thank you to our sponsors for making this possible!
IMAGE

Check out our flyer! IMAGE
18 replies
the_math_prodigy
Mar 24, 2025
ninjaforce
Today at 3:08 AM
9 Mathcounts school round 2025
wisewigglyjaguar   101
N Today at 2:10 AM by wuwang2002
I have been doing one set weekly, so I think I will do ok. How about you?

Edit:41 votes!
Edit: Thank you for 80 votes on Christmas Eve! :pilot:
Edit: 100 VOTES! :what?:
Edit: 150 VOTES! :coolspeak:
Edit: 200 VOTES!! :o
Edit: 275 VoTeS!!! :blush:
Edit: 300 VOtES!! :ninja:
101 replies
wisewigglyjaguar
Dec 23, 2024
wuwang2002
Today at 2:10 AM
Any SMT Online team needs one more member?
maxamc   1
N Today at 2:03 AM by Inaaya
Hi, I moved from Washington State to New Hampshire recently and at this moment I have not found a local team yet for this year's SMT. I am an 8th grader and last year I took SMT with the Washington Rainier Team. I did take USAJMO, and 2 years ago I was also with the Washington State Team at MATHCOUNTS Nationals. If your team needs one more member, please message me! Appreciate it! Thanks!
1 reply
maxamc
Today at 1:13 AM
Inaaya
Today at 2:03 AM
Sums Powers of Roots
CornSaltButter   23
N Today at 2:01 AM by AshAuktober
Source: AMC 12A 2019 #17
Let $s_k$ denote the sum of the $\textit{k}$th powers of the roots of the polynomial $x^3-5x^2+8x-13$. In particular, $s_0=3$, $s_1=5$, and $s_2=9$. Let $a$, $b$, and $c$ be real numbers such that $s_{k+1} = a \, s_k + b \, s_{k-1} + c \, s_{k-2}$ for $k = 2$, $3$, $....$ What is $a+b+c$?

$\textbf{(A)} \; -6 \qquad \textbf{(B)} \; 0 \qquad \textbf{(C)} \; 6 \qquad \textbf{(D)} \; 10 \qquad \textbf{(E)} \; 26$
23 replies
CornSaltButter
Feb 8, 2019
AshAuktober
Today at 2:01 AM
Inequality with 3 variables
bel.jad5   11
N Dec 7, 2020 by LeonhardEuler0
Source: alijadallah belabess
Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3 \geq 2(a+b+c)\]
11 replies
bel.jad5
Nov 4, 2018
LeonhardEuler0
Dec 7, 2020
Inequality with 3 variables
G H J
G H BBookmark kLocked kLocked NReply
Source: alijadallah belabess
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bel.jad5
3750 posts
#1 • 2 Y
Y by nguyendangkhoa17112003, Adventure10
Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3 \geq 2(a+b+c)\]
This post has been edited 1 time. Last edited by bel.jad5, Nov 4, 2018, 3:03 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
luofangxiang
4613 posts
#2 • 3 Y
Y by ywq233, Adventure10, Mango247
[(ab(a+c)+bc(b+a)+ca(c+b)]^2>=4(ab+bc+ca)[(ab)(bc)+(bc)(ca)+(ca)(ab)]
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bel.jad5
3750 posts
#3 • 2 Y
Y by Adventure10, Mango247
luofangxiang wrote:
[(ab(a+c)+bc(b+a)+ca(c+b)]^2>=4(ab+bc+ca)[(ab)(bc)+(bc)(ca)+(ca)(ab)]

And?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
luofangxiang
4613 posts
#4 • 2 Y
Y by ywq233, Adventure10
[a(x+y)+b(y+z)+c(z+x)]^2>=4(ab+bc+ca)(xy+yz+zx)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anhduy98
1080 posts
#5 • 3 Y
Y by bel.jad5, luofangxiang, Adventure10
bel.jad5 wrote:
Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3 \geq 2(a+b+c)\]

Use $$AX-BY\ge \sqrt{A^2-B^2}.\sqrt{X^2-Y^2},(*),(A\ge B \ge 0, X\ge Y\ge 0)$$Because $$(*) \Leftrightarrow (AY-BX)^2\ge 0 , (true)$$$$LHS=\frac{ab^2+bc^2+ca^2+3abc}{abc}=\frac{(a+b+c)(ab+bc+ca)-(a^2b+b^2c+c^2a)}{abc}$$$$LHS \ge \frac{(a+b+c)(ab+bc+ca)-\sqrt{a^2+b^2+c^2}.\sqrt{a^2b^2+b^2c^2+c^2a^2}}{abc}$$$$LHS \ge \frac{\sqrt{(a+b+c)^2-(\sqrt{a^2+b^2+c^2})^2}.\sqrt{(ab+bc+ca)^2-(\sqrt{a^2b^2+b^2c^2+c^2a^2})^2}}{abc}$$$$LHS \ge \frac{\sqrt{4abc(a+b+c)(ab+bc+ca)}}{abc}=\frac{2(ab+bc+ca)}{abc}=RHS$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bel.jad5
3750 posts
#6 • 2 Y
Y by Adventure10, Mango247
anhduy98 wrote:
bel.jad5 wrote:
Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3 \geq 2(a+b+c)\]

Use $$AX-BY\ge \sqrt{A^2-B^2}.\sqrt{X^2-Y^2},(*),(A\ge B \ge 0, X\ge Y\ge 0)$$Because $$(*) \Leftrightarrow (AY-BX)^2\ge 0 , (true)$$$$LHS=\frac{ab^2+bc^2+ca^2+3abc}{abc}=\frac{(a+b+c)(ab+bc+ca)-(a^2b+b^2c+c^2a)}{abc}$$$$LHS \ge \frac{(a+b+c)(ab+bc+ca)-\sqrt{a^2+b^2+c^2}.\sqrt{a^2b^2+b^2c^2+c^2a^2}}{abc}$$$$LHS \ge \frac{\sqrt{(a+b+c)^2-(\sqrt{a^2+b^2+c^2})^2}.\sqrt{(ab+bc+ca)^2-(\sqrt{a^2b^2+b^2c^2+c^2a^2})^2}}{abc}$$$$LHS \ge \frac{\sqrt{4abc(a+b+c)(ab+bc+ca)}}{abc}=\frac{2(ab+bc+ca)}{abc}=RHS$$

Brilliant!!!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41322 posts
#7
Y by
Let $a$, $b$ and $c$ positive real numbers such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that
\[2(a^2+b^2+c^2)\geq  a\sqrt{a^2+3}+b\sqrt{b^2+3}+c\sqrt{c^2+3} \]Let $a,b,c$ be positive real numbers, such that: $a+b+c \ge \frac {1}{a}+\frac {1}{b}+\frac{1}{c}$. Prove that:
$$a+b+c \ge \frac{3}{a+b+c}+\frac {2}{abc}$$Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
$$ a+b+c+abc \geq 4$$$$\frac 1{a+2}+\frac 1{b+2}+\frac 1{c+2}\leq 1$$\[\frac{1}{(2a+b+c)^2}+\frac{1}{(a+2b+c)^2}+\frac{1}{(a+b+2c)^2}\leq \frac{3}{16} \]\[3(a+b+c)\geq\sqrt{8a^{2}+1}+\sqrt{8b^{2}+1}+\sqrt{8c^{2}+1}.\]\[(a+b+c)^{2}+3\geq 4(a+b+c)\sqrt[3]{abc}\]$$(ab+bc+ca)(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})^2 \geq 27$$https://artofproblemsolving.com/community/c6h2896381p25793992
https://artofproblemsolving.com/community/c4h2821329p25787158
https://artofproblemsolving.com/community/c4h1813778p20534203
https://artofproblemsolving.com/community/c6h355781p1932917
https://artofproblemsolving.com/community/c6h1529847p9194503
https://artofproblemsolving.com/community/c6h1739555p11304368
https://artofproblemsolving.com/community/c6h1659898p10533543
Attachments:
This post has been edited 1 time. Last edited by sqing, Aug 4, 2022, 12:34 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Auditor
108 posts
#8
Y by
nice

Stronger .
Let $a, b, c, $ be positive real numbers such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that $$a+b+c \ge abc + \frac {2}{abc} .$$
This post has been edited 1 time. Last edited by Auditor, Nov 26, 2020, 7:52 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Auditor
108 posts
#9
Y by
Auditor wrote:
nice

Stronger .
Let $a, b, c, $ be positive real numbers such that $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that $$a+b+c \ge abc + \frac {2}{abc} .$$

Let $a, b, c, $ be non-zero real numbers such $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that $$a^2 + b^2 + c^2 + 6 \ge 3 (a+b+c) .$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
denery
180 posts
#10 • 3 Y
Y by Mango247, Mango247, Mango247
@auditor im pretty sure that equality is occuring at a=b=c=1
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Universes
96 posts
#11 • 1 Y
Y by Mango247
denery wrote:
@auditor im pretty sure that equality is occuring at a=b=c=1

And so ?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
LeonhardEuler0
103 posts
#12 • 1 Y
Y by TerenceTao11235
bel.jad5 wrote:
Let $a$, $b$ and $c$ positive real numbers such that: $a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$. Prove that:
\[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3 \geq 2(a+b+c)\]

First,Note that $ab*(ac+bc)=ab*(1-c^2)$ so,there is no solution for $c^2>1$ (a,b,c are positive) so $0<c=<1$ and because of the symmetry $0<a=<1$ and $0<b=<1$
Thus, $0<2(a+b+c)=<6$.
Then use AM-GM:
$a/b+b/c+c/a+3>=6$
Henceforth,
$a/b+b/c+c/a+3>=6>=2(a+b+c)$
Moreover if you use AM-HM,
$9=<(1/a+1/b+1/c)^2=(a+b+c)^2$
$3=<(a+b+c) , 6=<2(a+b+c)=<6 $
So $a+b+c=3$ and because of the nature of AM-GM-HM inequalities, $(a,b,c)$ is $(1,1,1)$.
This post has been edited 1 time. Last edited by LeonhardEuler0, Dec 7, 2020, 11:27 AM
Reason: Typo
Z K Y
N Quick Reply
G
H
=
a