Y by Adventure10, Mango247
On the sides of triangle
, isosceles right-angled triangles
, and
are placed. These three triangles have their right angles at vertices
, and
, respectively. Triangle
lies completely inside triangle
and triangles
and
lie completely outside
. See the figure. Prove that quadrilateral
is a parallelogram.
![[asy]
import markers;
unitsize(1.5 cm);
pair A, B, C, U, V, W;
A = (0,0);
B = (2,0);
C = (1.7,2.5);
U = (B + rotate(90,A)*(B))/2;
V = (B + rotate(90,C)*(B))/2;
W = (C + rotate(90,A)*(C))/2;
draw(A--B--C--cycle);
draw(A--W, StickIntervalMarker(1,1,size=2mm));
draw(C--W, StickIntervalMarker(1,1,size=2mm));
draw(B--V, StickIntervalMarker(1,2,size=2mm));
draw(C--V, StickIntervalMarker(1,2,size=2mm));
draw(A--U, StickIntervalMarker(1,3,size=2mm));
draw(B--U, StickIntervalMarker(1,3,size=2mm));
draw(rightanglemark(A,U,B,5));
draw(rightanglemark(B,V,C,5));
draw(rightanglemark(A,W,C,5));
dot("$A$", A, S);
dot("$B$", B, S);
dot("$C$", C, N);
dot("$U$", U, NE);
dot("$V$", V, NE);
dot("$W$", W, NW);
[/asy]](//latex.artofproblemsolving.com/4/0/e/40ee277426f9dc10dcd2b3414d57da0a6e4efd38.png)











![[asy]
import markers;
unitsize(1.5 cm);
pair A, B, C, U, V, W;
A = (0,0);
B = (2,0);
C = (1.7,2.5);
U = (B + rotate(90,A)*(B))/2;
V = (B + rotate(90,C)*(B))/2;
W = (C + rotate(90,A)*(C))/2;
draw(A--B--C--cycle);
draw(A--W, StickIntervalMarker(1,1,size=2mm));
draw(C--W, StickIntervalMarker(1,1,size=2mm));
draw(B--V, StickIntervalMarker(1,2,size=2mm));
draw(C--V, StickIntervalMarker(1,2,size=2mm));
draw(A--U, StickIntervalMarker(1,3,size=2mm));
draw(B--U, StickIntervalMarker(1,3,size=2mm));
draw(rightanglemark(A,U,B,5));
draw(rightanglemark(B,V,C,5));
draw(rightanglemark(A,W,C,5));
dot("$A$", A, S);
dot("$B$", B, S);
dot("$C$", C, N);
dot("$U$", U, NE);
dot("$V$", V, NE);
dot("$W$", W, NW);
[/asy]](http://latex.artofproblemsolving.com/4/0/e/40ee277426f9dc10dcd2b3414d57da0a6e4efd38.png)
This post has been edited 2 times. Last edited by nsato, Feb 14, 2023, 1:54 AM