Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
two subsets with no fewer than four common elements.
micliva   39
N an hour ago by de-Kirschbaum
Source: All-Russian Olympiad 1996, Grade 9, First Day, Problem 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.

A. Skopenkov
39 replies
micliva
Apr 18, 2013
de-Kirschbaum
an hour ago
3 knightlike moves is enough
sarjinius   2
N an hour ago by cooljoseph
Source: Philippine Mathematical Olympiad 2025 P6
An ant is on the Cartesian plane. In a single move, the ant selects a positive integer $k$, then either travels [list]
[*] $k$ units vertically (up or down) and $2k$ units horizontally (left or right); or
[*] $k$ units horizontally (left or right) and $2k$ units vertically (up or down).
[/list]
Thus, for any $k$, the ant can choose to go to one of eight possible points.
Prove that, for any integers $a$ and $b$, the ant can travel from $(0, 0)$ to $(a, b)$ using at most $3$ moves.
2 replies
sarjinius
Mar 9, 2025
cooljoseph
an hour ago
Camp Conway acceptance
fossasor   17
N an hour ago by fossasor
Hello! I've just been accepted into Camp Conway, but I'm not sure how popular this camp actually is, given that it's new. Has anyone else applied/has been accepted/is going? (I'm trying to figure out to what degree this acceptance was just lack of qualified applicants, so I can better predict my chances of getting into my preferred math camp.)
17 replies
fossasor
Feb 20, 2025
fossasor
an hour ago
16th ibmo - uruguay 2001/q3.
carlosbr   21
N an hour ago by de-Kirschbaum
Source: Spanish Communities
Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements.

Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$
21 replies
carlosbr
Apr 15, 2006
de-Kirschbaum
an hour ago
Weird Geo
Anto0110   1
N an hour ago by cooljoseph
In a trapezium $ABCD$, the sides $AB$ and $CD$ are parallel and the angles $\angle ABC$ and $\angle BAD$ are acute. Show that it is possible to divide the triangle $ABC$ into 4 disjoint triangle $X_1. . . , X_4$ and the triangle $ABD$ into 4 disjoint triangles $Y_1,. . . , Y_4$ such that the triangles $X_i$ and $Y_i$ are congruent for all $i$.
1 reply
Anto0110
Yesterday at 9:24 PM
cooljoseph
an hour ago
Bogus Proof Marathon
pifinity   7597
N an hour ago by iwastedmyusername
Hi!
I'd like to introduce the Bogus Proof Marathon.

In this marathon, simply post a bogus proof that is middle-school level and the next person will find the error. You don't have to post the real solution :P

Use classic Marathon format:
[hide=P#]a1b2c3[/hide]
[hide=S#]a1b2c3[/hide]


Example posts:

P(x)
-----
S(x)
P(x+1)
-----
Let's go!! Just don't make it too hard!
7597 replies
1 viewing
pifinity
Mar 12, 2018
iwastedmyusername
an hour ago
Facts About 2025!
Existing_Human1   249
N an hour ago by EthanNg6
Hello AOPS,

As we enter the New Year, the most exciting part is figuring out the mathematical connections to the number we have now temporally entered

Here are some facts about 2025:
$$2025 = 45^2 = (20+25)(20+25)$$$$2025 = 1^3 + 2^3 +3^3 + 4^3 +5^3 +6^3 + 7^3 +8^3 +9^3 = (1+2+3+4+5+6+7+8+9)^2 = {10 \choose 2}^2$$
If anyone has any more facts about 2025, enlighted the world with a new appreciation for the year


(I got some of the facts from this video)
249 replies
Existing_Human1
Jan 1, 2025
EthanNg6
an hour ago
Area of Polygon
AIME15   43
N 2 hours ago by EthanNg6
The area of polygon $ ABCDEF$, in square units, is

IMAGE

\[ \textbf{(A)}\ 24 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 46 \qquad
\textbf{(D)}\ 66 \qquad
\textbf{(E)}\ 74
\]
43 replies
AIME15
Jan 12, 2009
EthanNg6
2 hours ago
Hard FE R^+
DNCT1   5
N 3 hours ago by jasperE3
Find all functions $f:\mathbb{R^+}\to\mathbb{R^+}$ such that
$$f(3x+f(x)+y)=f(4x)+f(y)\quad\forall x,y\in\mathbb{R^+}$$
5 replies
DNCT1
Dec 30, 2020
jasperE3
3 hours ago
Maximum of Incenter-triangle
mpcnotnpc   4
N 3 hours ago by mpcnotnpc
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
4 replies
mpcnotnpc
Mar 25, 2025
mpcnotnpc
3 hours ago
Something nice
KhuongTrang   26
N 3 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
KhuongTrang
Nov 1, 2023
KhuongTrang
3 hours ago
Tiling rectangle with smaller rectangles.
MarkBcc168   59
N 4 hours ago by Bonime
Source: IMO Shortlist 2017 C1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.

Proposed by Jeck Lim, Singapore
59 replies
MarkBcc168
Jul 10, 2018
Bonime
4 hours ago
Existence of AP of interesting integers
DVDthe1st   34
N 4 hours ago by DeathIsAwe
Source: 2018 China TST Day 1 Q2
A number $n$ is interesting if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.
34 replies
DVDthe1st
Jan 2, 2018
DeathIsAwe
4 hours ago
Strange Geometry
Itoz   1
N 5 hours ago by hukilau17
Source: Own
Given a fixed circle $\omega$ with its center $O$. There are two fixed points $B, C$ and one moving point $A$ on $\omega$. The midpoint of the line segment $BC$ is $M$. $R$ is a fixed point on $\omega$. Line $AO$ intersects$\odot(AMR)$ at $P(\ne A)$, and line $BP$ intersects $\odot(BOC)$ at $Q(\ne B)$.

Find all the fixed points $R$ such that $\omega$ is always tangent to $\odot (OPQ)$ when $A$ varies.
Hint
1 reply
Itoz
Yesterday at 2:00 PM
hukilau17
5 hours ago
Prime number and composite number
mingzhehu   3
N Apr 5, 2025 by mingzhehu
I have one topic on how to identify Prime Number and Composite Number quickly? Maybe the number is more than 100 or 1000.......!
If there are some formula that can be used to verify the number easily, it will be highly appreciated.
Does anybody has any good idea for that?

3 replies
mingzhehu
Apr 5, 2025
mingzhehu
Apr 5, 2025
Prime number and composite number
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mingzhehu
5 posts
#1
Y by
I have one topic on how to identify Prime Number and Composite Number quickly? Maybe the number is more than 100 or 1000.......!
If there are some formula that can be used to verify the number easily, it will be highly appreciated.
Does anybody has any good idea for that?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mikkymini2
13 posts
#2
Y by
Hey, not sure if there is a specific formula to check for prime numbers...
But I remember reading something like checking the divisibility up to the square root...
Like you have a no. N. Take the square root of it and then check for divisibility by prime numbers up to square root of N...
Example: N=101, square root of 101 is approx. 10, now check the divisibility of 101 by the primes less than 10(here 2,3,5,7)...By checking you get that 101 is not divisible by any of them, hence its prime.
Hope it helps :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mingzhehu
5 posts
#3
Y by
Thanks Sir! I have more idea for that may share with later on. To define the formula on how to justify the prime number and composite number exactly.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mingzhehu
5 posts
#4
Y by
A=(10X1+1)(10X+1),X1,X∈N+
B=(10 X1+3)(10X+7),X∈N,X1∈N
C=(10 X1+9)(10X+9), X∈N,X1∈N
D=(10 X1+1)(10X+3), X1∈N+,X∈N
E=(10 X1+7)(10X+9),X∈N,X1∈N
F=(10 X1+1)(10X+7),X1∈N+,X∈N
G=(10 X1+3)(10X+9),X∈N,X1∈N
H=(10 X1+1)10X+9),X1∈N+,X∈N
I=(10 X1+3)(10X+3),X1∈N,X∈N
J=( 10X1+7)(10X+7),X∈N,X1∈N

For any natural number P∈{P=10N+1,n∈N},make P=A or B or C
If P can make the roots of function group(ABC) without any root group completely made up of integer, P will be a prime
For any natural number P∈{P=10N+3,n∈N},make P=D or E
If P can make the roots of function group(DE) without any root group completely made up
of integer, P will be a prime
For any natural number P∈{P=10N+7,n∈N},make P=F or G
If P can make the roots of function group(FG) without any root group completely made up
of integer, P will be a prime
For any natural number P∈{P=10N+9,n∈N},make P=H or I or J
If P can make the roots of function group(GIJ) without any root group completely made up
of integer, P will be a prime
Z K Y
N Quick Reply
G
H
=
a