Y by Adventure10
In the acute triangle
, the midpoint of side
is called
. Point
lies on the angle bisector of
such that
. Point
lies on the angle bisector of
such that
. Line segments
and
intersect in point
. Prove that
is the midpoint of
.
![[asy]
import geometry;
unitsize (1.2 cm);
pair A, B, C, M, X, Y, Z;
A = (0,0);
B = (4,1.5);
C = (0.5,3);
M = (B + C)/2;
X = extension(M, incenter(A,B,M), B, B + rotate(90)*(incenter(A,B,M) - M));
Y = extension(M, incenter(A,C,M), C, C + rotate(90)*(incenter(A,C,M) - M));
Z = extension(A,M,X,Y);
draw(A--B--C--cycle);
draw(A--M);
draw(M--interp(M,X,2));
draw(M--interp(M,Y,2));
draw(B--X, dotted);
draw(C--Y, dotted);
draw(X--Y);
dot("$A$", A, SW);
dot("$B$", B, E);
dot("$C$", C, N);
dot("$M$", M, NE);
dot("$X$", X, NW);
dot("$Y$", Y, NE);
dot("$Z$", Z, S);
[/asy]](//latex.artofproblemsolving.com/5/4/f/54f32dbc0eef6f62486c7cea9fc71e53af39afe8.png)














![[asy]
import geometry;
unitsize (1.2 cm);
pair A, B, C, M, X, Y, Z;
A = (0,0);
B = (4,1.5);
C = (0.5,3);
M = (B + C)/2;
X = extension(M, incenter(A,B,M), B, B + rotate(90)*(incenter(A,B,M) - M));
Y = extension(M, incenter(A,C,M), C, C + rotate(90)*(incenter(A,C,M) - M));
Z = extension(A,M,X,Y);
draw(A--B--C--cycle);
draw(A--M);
draw(M--interp(M,X,2));
draw(M--interp(M,Y,2));
draw(B--X, dotted);
draw(C--Y, dotted);
draw(X--Y);
dot("$A$", A, SW);
dot("$B$", B, E);
dot("$C$", C, N);
dot("$M$", M, NE);
dot("$X$", X, NW);
dot("$Y$", Y, NE);
dot("$Z$", Z, S);
[/asy]](http://latex.artofproblemsolving.com/5/4/f/54f32dbc0eef6f62486c7cea9fc71e53af39afe8.png)
This post has been edited 2 times. Last edited by nsato, Feb 13, 2023, 9:58 PM