Y by Adventure10, Mango247
Call a scalene triangle K disguisable if there exists a triangle K′ similar to K with two shorter sides precisely as long as the two longer sides of K, respectively. Call a disguisable triangle integral if the lengths of all its sides are integers.
(a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter.
(b) Let K be an arbitrary integral disguisable triangle for which no smaller integral
disguisable triangle similar to it exists. Prove that at least two side lengths of K are
perfect squares.
(a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter.
(b) Let K be an arbitrary integral disguisable triangle for which no smaller integral
disguisable triangle similar to it exists. Prove that at least two side lengths of K are
perfect squares.