Join our free webinar April 22 to learn about competitive programming!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
What is the likelihood the last card left in the deck is black?
BEHZOD_UZ   1
N 29 minutes ago by sami1618
Source: Yandex Uzbekistan Coding and Math Contest 2025
You have a deck of cards containing $26$ black and $13$ red cards. You pull out $2$ cards, one after another, and check their colour. If both cards are the same colour, then a black card is added to the deck. However, if the cards are of different colours, then a red card is used to replace them. Once the cards are taken out of the deck, they are not returned to the deck, and thus the number of cards keeps reducing. What is the likelihood the last card left in the deck is black?
1 reply
BEHZOD_UZ
44 minutes ago
sami1618
29 minutes ago
abc(a+b+c)=3, show that prod(a+b)>=8 [Indian RMO 2012(b) Q4]
Potla   31
N 33 minutes ago by sqing
Let $a,b,c$ be positive real numbers such that $abc(a+b+c)=3.$ Prove that we have
\[(a+b)(b+c)(c+a)\geq 8.\]
Also determine the case of equality.
31 replies
Potla
Dec 2, 2012
sqing
33 minutes ago
AGI-Origin Solves Full IMO 2020–2024 Benchmark Without Solver (30/30) beat Alpha
AGI-Origin   10
N 44 minutes ago by TestX01
Hello IMO community,

I’m sharing here a full 30-problem solution set to all IMO problems from 2020 to 2024.

Standard AI: Prompt --> Symbolic Solver (SymPy, Geometry API, etc.)

Unlike AlphaGeometry or symbolic math tools that solve through direct symbolic computation, AGI-Origin operates via recursive symbolic cognition.

AGI-Origin:
Prompt --> Internal symbolic mapping --> Recursive contradiction/repair --> Structural reasoning --> Human-style proof

It builds human-readable logic paths by recursively tracing contradictions, repairing structure, and collapsing ambiguity — not by invoking any external symbolic solver.

These results were produced by a recursive symbolic cognition framework called AGI-Origin, designed to simulate semi-AGI through contradiction collapse, symbolic feedback, and recursion-based error repair.

These were solved without using any symbolic computation engine or solver.
Instead, the solutions were derived using a recursive symbolic framework called AGI-Origin, based on:
- Contradiction collapse
- Self-correcting recursion
- Symbolic anchoring and logical repair

Full PDF: [Upload to Dropbox/Google Drive/Notion or arXiv link when ready]

This effort surpasses AlphaGeometry’s previous 25/30 mark by covering:
- Algebra
- Combinatorics
- Geometry
- Functional Equations

Each solution follows a rigorous logical path and is written in fully human-readable format — no machine code or symbolic solvers were used.

I would greatly appreciate any feedback on the solution structure, logic clarity, or symbolic methodology.

Thank you!

— AGI-Origin Team
AGI-Origin.com
10 replies
AGI-Origin
5 hours ago
TestX01
44 minutes ago
Incredible combinatorics problem
A_E_R   1
N an hour ago by CerealCipher
Source: Turkmenistan Math Olympiad - 2025
For any integer n, prove that there are exactly 18 integer whose sum and the sum of the fifth powers of each are equal to the integer n.
1 reply
A_E_R
2 hours ago
CerealCipher
an hour ago
No more topics!
R+ Functional Equation
Mathdreams   10
N Apr 15, 2025 by TestX01
Source: Nepal TST 2025, Problem 3
Find all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that \[f(f(x)) + xf(xy) = x + f(y)\]for all positive real numbers $x$ and $y$.

(Andrew Brahms, USA)
10 replies
Mathdreams
Apr 11, 2025
TestX01
Apr 15, 2025
R+ Functional Equation
G H J
G H BBookmark kLocked kLocked NReply
Source: Nepal TST 2025, Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mathdreams
1465 posts
#1 • 1 Y
Y by khan.academy
Find all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that \[f(f(x)) + xf(xy) = x + f(y)\]for all positive real numbers $x$ and $y$.

(Andrew Brahms, USA)
This post has been edited 1 time. Last edited by Mathdreams, Apr 11, 2025, 1:28 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megarnie
5587 posts
#2 • 4 Y
Y by khan.academy, KevinYang2.71, abrahms, Alex-131
The only solutions are $f(x) = \frac cx$ for some constant $c$ and $f\equiv 1$, which clearly work.

Let $P(x,y)$ be the given assertion. Clearly $1$ is the only constant solution, so assume $f$ is not constant.

Claim: $f$ is injective.
Proof: Suppose $f(a) = f(b)$ for some positive reals $a,b$.

$P(x,a)$ with $P(x,b)$ gives that $f(xa) = f(xb)$ for all $x \in \mathbb R^{+}$.

Now, $P(a,x)$ compared with $P(b,x)$ gives $af(ax) - a = b f(bx) - b$, so $a(f(ax) - 1) = b (f(bx) - 1)$. But, since $f(ax) = f(bx)$, we have \[ a(f(ax) - 1) = b(f(ax) - 1) \]Since $f$ isn't constant, we can choose $x$ where $f(ax) \ne 1$, so $a = b$. $\square$

$P(x, f(x)): f(f(x)) + xf(xf(x)) = x + f(f(x))$, so $xf(xf(x)) = x \implies f(xf(x)) = 1$.

$P(1, y): f(f(1)) = 1$.

Injectivity implies $xf(x) = f(1)$ for all $x$, so $f(x) = \frac{f(1)}{x}$, and setting $c = f(1)$ gives the desired result.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pco
23508 posts
#3 • 4 Y
Y by khan.academy, Maksat_B, Sedro, abrahms
Mathdreams wrote:
Find all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that \[f(f(x)) + xf(xy) = x + f(y)\]for all positive real numbers $x$ and $y$.
Let $P(x,y)$ be the assertion $f(f(x))+xf(xy)=x+f(y)$
Let $c=f(1)$ and $d=f(2)$

Subtracting $P(x,1)$ from $P(x,2)$, we get $f(2x)=f(x)+\frac{d-c}x$
Subtracting $P(2,1)$ from $P(2,x)$, we get $f(2x)=d+\frac{f(x)-c}2$

Subtracting : $f(x)=2\frac{c-d}x+2d-c$

Plugging $f(x)=\frac ax+b$ in original equation, we get $(a,b)=(\text{anything},0)$ or $(0,1)$ and solutions :
$\boxed{\text{S1 : }f(x)=1\quad\forall x>0}$, which indeed fits

$\boxed{\text{S2 : }f(x)=\frac ax\quad\forall x>0}$, which indeed fits, whatever is $a>0$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11234 posts
#4 • 1 Y
Y by AlexCenteno2007
Let $P(x,y)$ be the assertion $f(f(x))+xf(xy)=x+f(y)$.
$P(x,f(x))\Rightarrow f(xf(x))=1$
$P(f(x),x)\Rightarrow f(f(f(x)))=f(x)$
$P(f(x),y)\Rightarrow f(x)f(yf(x))=f(y)$, in particular we have $f(f(x))=\frac{f(1)}{f(x)}$
$P(x,f(y))\Rightarrow xf(x)^2-(xf(y)+f(1))f(x)+f(y)f(1)=0\Rightarrow f(x)\in\left\{f(y),\frac{f(1)}x\right\}$ for each $x,y\in\mathbb R^+$ (we solved this as a quadratic in $f(x)$)
If $f(x)\ne\frac{f(1)}x$ for some $x$ then by varying $y$ over $\mathbb R^+$ we get that $f$ is constant, and testing, the only constant solution is $\boxed{f(x)=1}$ for all $x$.
Otherwise, $\boxed{f(x)=\frac cx}$ which works for any $c\in\mathbb R^+$.
This post has been edited 1 time. Last edited by jasperE3, Apr 11, 2025, 5:24 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tony_stark0094
62 posts
#6
Y by
if $f \equiv c$ then $c$ must be $1$ further assume $f$ is not constant:
it's easy to get $f(f(1))=1$
and observe that $f$ is injective:
now $P(x,f(x)): f(f(x))+xf(xf(x))=x+f(f(x)) \implies f(xf(x))=1$
from injectivity $xf(x)=f(1) \implies f(x)=\frac {f(1)}{x}$
hence $f(x)=1 \forall x \in R$ and $f(x)=\frac {f(1)}{x} \forall x \in R$ are the only solutions
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11234 posts
#7
Y by
Tony_stark0094 wrote:
it's easy to get $f(f(1))=1$
and observe that $f$ is injective:

how?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tony_stark0094
62 posts
#8
Y by
jasperE3 wrote:
Tony_stark0094 wrote:
it's easy to get $f(f(1))=1$
and observe that $f$ is injective:

how?

$P(1,1): f(f(1))+f(1)=1+f(1) \implies f(f(1))=1$
for injectivity assume $f(a)=f(b)$
then subtract $P(a,1)$ from $P(b,1)$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11234 posts
#9
Y by
Tony_stark0094 wrote:
jasperE3 wrote:
Tony_stark0094 wrote:
it's easy to get $f(f(1))=1$
and observe that $f$ is injective:

how?

$P(1,1): f(f(1))+f(1)=1+f(1) \implies f(f(1))=1$
for injectivity assume $f(a)=f(b)$
then subtract $P(a,1)$ from $P(b,1)$

and what if $f(a)=f(b)=1$ (which is indeed the particular case $f(xf(x))=f(f(1))=1$ that you use injectivity for)
This post has been edited 1 time. Last edited by jasperE3, Apr 12, 2025, 7:35 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ThatApollo777
73 posts
#10
Y by
Claim : the only solutions are $f(x) = 1$ and $f(x) = \frac{c}{x}$.
Pf : Its easy to check these work, we now show these are only solutions.

Claim 1: If $f$ is not injective, its identically $1$.
Let $P(x, y)$ be the assertion. $$P(1,1) \implies f(f(1)) = 1$$Assuming $f(a) = f(b)$ for $a \neq b$. Let $r = \frac{b}{a} \neq 1$. $$P(a, y) - P(b, y) \implies a(f(ay) - 1) = b(f(by)-1)$$Putting $y = \frac{f(1)}{a}$ we can conclude: $$f(rf(1)) = 1$$$$P(\frac{x}{f(1)}, f(1)) - P(\frac{x}{f(1)}, rf(1)) \implies f(x) = f(rx)$$$$P(x, \frac{t}{x}) - P(rx, \frac{t}{x}) \implies f(t) = 1$$Since $r \neq 1$.

Now, assuming $f$ is injective consider $$P(x, \frac{f(1)}{x}) : f(f(x)) = f(\frac{f(1)}{x}) \implies f(x) = \frac{f(1)}{x}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
595 posts
#11
Y by
The answers are $f(x) = 1$ for all $x\in \mathbb{R}^+$ and $f(x)= \frac{c}{x}$ for all $x\in \mathbb{R}^+$ for some fixed constant $c \in \mathbb{R}^+$. It’s easy to see that these functions satisfy the given equation. We now show these are the only solutions. Let $P(x,y)$ be the assertion that $f(f(x))+xf(xy)=x+f(y)$ for positive real numbers $x$ and $y$.

In what follows we assume that $f$ is not constant one. Say there does now exist some $x_0 \ne 1$ such that $f(x_0) \ne 1$ (i.e for all $x_0\ne 1$ we have $f(x_0)=1$). As $f$ is not constant one this indicates that $f(1) \ne 1$. Then, $P\left(x,\frac{1}{x}\right)$ yields,
\begin{align*}
f(f(x)) + xf(1) &= x+f\left(\frac{1}{x}\right)\\
f(1) + xf(1) &= x+1 \\
(x+1)f(1) &= x+1
\end{align*}which is a clear contradiction since $x+1>0$ and $f(1) \ne 1$. Thus, there indeed exists some $x_0 \ne 1$ such that $f(x_0) \ne 1$. Now, $P(1,1)$ implies that
\[f(f(1))+f(1)=1+f(1)\]from which we have $f(f(1))=1$. We now make the following observation.

Claim : The function $f$ is injective.

Proof : We first show that it is injective at all points except 1. For this, note that if there exists $t_1 \ne t_2 $ such that $f(t_1) =f(t_2) \ne 1$. Then, $P(t_1,1)$ and $P(t_2,1)$ yeild,
\[f(f(t_1))+t_1f(t_1)=t_1+f(1)\]\[f(f(t_2))+t_2f(t_2)=t_2+f(1)\]whose difference implies
\[(t_1-t_2)f(t_1)=t_1-t_2\]which since $f(t_1) \ne 1$ implies that $t_1=t_2$ which is a contradiction. Hence, $f$ is indeed injective at all points except 1.

With this observation in hand, consider $x_0 \ne 1$ such that $f(x_0) \ne 1$ and $\alpha$ such that $f(\alpha)=1$. Then, from $P\left(x_0 , \frac{\alpha}{x_0}\right)$ we have
\begin{align*}
f(f(x_0)) + x_0f(\alpha) &= x_0 + f\left(\frac{\alpha}{x_0}\right)\\
f(f(x_0)) &=  f\left(\frac{\alpha}{x_0}\right)
\end{align*}Now,
\[f(f(f(x_0))) = f\left(f\left(\frac{\alpha}{x_0}\right)\right)=f(x_0)\]which since $f(x_0) \ne 1$ implies $f(f(x_0))=x_0 \ne 1$. Thus,
\begin{align*}
f(f(x_0)) &=  f\left(\frac{\alpha}{x_0}\right)\\
f(x_0) &= \frac{\alpha}{x_0}
\end{align*}In particular, if there exists $\alpha_1,\alpha_2 \in \mathbb{R}^+$ such that $f(\alpha_1)=f(\alpha_2)=1$ we have
\[\frac{\alpha_1}{x_0} = f(x_0) = \frac{\alpha_2}{x_0}\]which implies $\alpha_1=\alpha_2$ proving the claim.

Thus, $f$ is injective and
\[f(x) = \frac{f(1)}{x}\]for all $x \ne f(1)$ and $f(f(1))=1$. This implies that indeed $f(x) = \frac{c}{x}$ for some fixed constant $c \in \mathbb{R}^+$ as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TestX01
340 posts
#12
Y by
cutie patootie problem

We claim either $f$ is one or $\frac{c}{x}$. These clearly work. Let $P(x,y)$ denote the assertion.
Firstly, $P(1,1)$ gives $f(f(1))=1$.
$P(x,1)$ yields $f(f(x))+xf(x)=x+f(1)$. Hence $f(f(x))=xf(1)-xf(x)$. Thus, subbing back, $xf(xy)+f(1)-xf(x)=f(y)$. Now take $x\to f(1)$ so we get
\[f(1)f(f(1)y)=f(y)\]Now, we will take $y\to f(1)y$ in $xf(xy)+f(1)-xf(x)=f(y)$ to get $\frac{xf(xy)}{f(1)}+f(1)-xf(x)=\frac{f(y)}{f(1)}$. Comparing this with $xf(xy)+f(1)-xf(x)=f(y)$, we have
\[xf(xy)\left(\frac{1}{f(1)}-1\right)=f(y)\left(\frac{1}{f(1)}-1\right)\]This gives us two cases. Either $f(1)=1$ or $xf(xy)=f(y)$ for all $x,y$. In the latter case, we would have $xf(x)=f(1)$, and $f(x)=\frac{c}{x}$ which is a solution.

Now, suppose $f(1)=1$. Then, taking $P\left(x,\frac{1}{x}\right)$, we have $f(f(x))+x=x+f\left(\frac{1}{x}\right)$ hence $f(f(x))=f\left(\frac{1}{x}\right)$. Assume that $f$ is not always constant, as if it was constant then we would have $cx=x$ hence $c=1$ as desired. We shall prove that $f$ is injective, which would finish as then cancelling one $f$ we get $f(x)=\frac{1}{x}$.

Let $f(a)=f(b)$ such that WLOG $\frac{b}{a}>1$. Take $y=a,b$, so we have $f(f(x))+xf(ax)=x+f(a)$ and $f(f(x))+xf(bx)=x+f(b)$. Subtracting we have
\[x(f(ax)-f(bx))=f(a)-f(b)=0\]Hence, as $x\neq 0$, we have
\[f(ax)=f(bx)\quad f(x)=f(cx)\]where $c=\frac{b}{a}>1$ by scaling down $x$.

Now, consider $P(cx,y)$ so we get $f(f(x))+cxf(xy)=cx+f(y)$. Comparing with $P(x,y)$ we have
\[xf(xy)(c-1)=x(c-1)\]Yet $c-1>0$. Thus, we have $xf(xy)=x$ or $f(xy)=1$. Taking $y=1$ gives $f(x)=1$ for all $x$, a contradiction as we have dealt with constant $f$.

Thus, $f$ must be injective, and we are done.
Z K Y
N Quick Reply
G
H
=
a