Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Beautiful geometry
m4thbl3nd3r   0
2 minutes ago
Let $\omega$ be the circumcircle of triangle $ABC$, $M$ is the midpoint of $BC$ and $E$ be the second intersection of $AM$ and $\omega$. Tangent line of $\omega$ at $E$ intersects $BC$ at $P$, let $PKL$ be a transversal of $\omega$ and $X,Y$ be intersections of $AK,AL$ with $BC$. Let $PF$ be a tangent line of $\omega$. Prove that $LYFP$ is cyclic
0 replies
m4thbl3nd3r
2 minutes ago
0 replies
powers sums and triangular numbers
gaussious   2
N 6 minutes ago by Quidditch
prove 1^k+2^k+3^k + \cdots + n^k \text{is divisible by } \frac{n(n+1)}{2} \text{when} k \text{is odd}
2 replies
gaussious
4 hours ago
Quidditch
6 minutes ago
prove |a-b| is a square, given a-b=a^2c-b^2d
Alpha314159   4
N 24 minutes ago by Leman_Nabiyeva
Source: Macau Inter High School Competition
Let $a, b$ be integers such that there are consecutive integers $c,d$ satisfy $$a-b=a^2 c-b^2 d$$.
Prove : $|a-b|$ is a perfect square.
4 replies
+1 w
Alpha314159
Mar 7, 2020
Leman_Nabiyeva
24 minutes ago
Inspired by pennypc123456789
sqing   0
32 minutes ago
Source: Own
Let $ a,b,c\geq 0 $and $ab+bc+ca\neq 0.$ Prove that
$$ \frac{9-8\sqrt 2+5\sqrt 5}{6}\leq\frac{a + b}{a + 2b + c} + \dfrac{b + c}{b + 2c + a}+\dfrac{c + a}{c + 2a + b}\leq \frac{9+8\sqrt 2-5\sqrt 5}{6}$$
0 replies
sqing
32 minutes ago
0 replies
The Bank of Bath
TelMarin   100
N 35 minutes ago by Ihatecombin
Source: IMO 2019, problem 5
The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing $H$, then he turns over the $k$th coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n=3$ the process starting with the configuration $THT$ would be $THT \to HHT  \to HTT \to TTT$, which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$.

Proposed by David Altizio, USA
100 replies
TelMarin
Jul 17, 2019
Ihatecombin
35 minutes ago
Permutations of Integers from 1 to n
Twoisntawholenumber   74
N 37 minutes ago by Maximilian113
Source: 2020 ISL C1
Let $n$ be a positive integer. Find the number of permutations $a_1$, $a_2$, $\dots a_n$ of the
sequence $1$, $2$, $\dots$ , $n$ satisfying
$$a_1 \le 2a_2\le 3a_3 \le \dots \le na_n$$.

Proposed by United Kingdom
74 replies
Twoisntawholenumber
Jul 20, 2021
Maximilian113
37 minutes ago
11^n+2^n+6=m^3
jungle_wang   5
N 41 minutes ago by Rayanelba
Source: 2024IMOC
Find all positive integers $(m,n)$ such that
$$11^n+2^n+6=m^3$$
5 replies
jungle_wang
Aug 1, 2024
Rayanelba
41 minutes ago
Inequality from my inequality training.
Orkhan-Ashraf_2002   2
N an hour ago by sqing
Let $a,b,c$ non-negative real numbers,but $ab+bc+ca\not=$0.Prove that
\[1\leq \frac{a+b}{a+4b+c}+\frac{b+c}{b+4c+a}+\frac{c+a}{c+4a+b}\leq \frac{4}{3}\]
2 replies
Orkhan-Ashraf_2002
Aug 21, 2016
sqing
an hour ago
inequalities
pennypc123456789   3
N an hour ago by arqady
If $a,b,c$ are positive real numbers, then
$$
\frac{a + b}{a + 7b + c} + \dfrac{b + c}{b + 7c + a}+\dfrac{c + a}{c + 7a + b} \geq \dfrac{2}{3}$$
we can generalize this problem
3 replies
pennypc123456789
3 hours ago
arqady
an hour ago
Using Humpty point on Trapezoid ??
FireBreathers   1
N an hour ago by aidenkim119
Given a trapezoid $ABCD$ with $AD//BC$. Let point $H$ be orthocenter $ABD$ and $M$ midpoint $AD$. It is also known that $HC$ perpendicular to $BM$. Let $X$ be a point on the segment $AB$ such that $XH=BH$ and point $Y$ be the intersection of $CX$ and $BD$. Prove that $AXYD$ concyclic
1 reply
FireBreathers
4 hours ago
aidenkim119
an hour ago
IMO 2014 Problem 2
v_Enhance   60
N an hour ago by math-olympiad-clown
Source: 0
Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is peaceful if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.
60 replies
v_Enhance
Jul 8, 2014
math-olympiad-clown
an hour ago
Counting friends in two ways
joybangla   18
N an hour ago by Mathworld314
Source: ISI Entrance 2014, P1
Suppose a class contains $100$ students. Let, for $1\le i\le 100$, the $i^{\text{th}}$ student have $a_i$ many friends. For $0\le j\le 99$ let us define $c_j$ to be the number of students who have strictly more than $j$ friends. Show that \begin{align*} & \sum_{i=1}^{100}a_i=\sum_{j=0}^{99}c_j \end{align*}
18 replies
joybangla
May 11, 2014
Mathworld314
an hour ago
Function equation
luci1337   0
2 hours ago
find all function $f:R \rightarrow R$ such that:
$2f(x)f(x+y)-f(x^2)=\frac{x}{2}(f(2x)+f(f(y)))$ with all $x,y$ is real number
0 replies
luci1337
2 hours ago
0 replies
Coaxal Circles
fattypiggy123   29
N 2 hours ago by sttsmet
Source: China TSTST Test 2 Day 1 Q3
Let $ABCD$ be a quadrilateral and let $l$ be a line. Let $l$ intersect the lines $AB,CD,BC,DA,AC,BD$ at points $X,X',Y,Y',Z,Z'$ respectively. Given that these six points on $l$ are in the order $X,Y,Z,X',Y',Z'$, show that the circles with diameter $XX',YY',ZZ'$ are coaxal.
29 replies
fattypiggy123
Mar 13, 2017
sttsmet
2 hours ago
Estonian Math Competitions 2005/2006
STARS   1
N Jul 30, 2008 by ¬[ƒ(Gabriel)³²¹º]¼
Source: Seniors Problem 3
Let $ ABC$ be an acute triangle and choose points $ A_1, B_1$ and $ C_1$ on sides $ BC, CA$ and $ AB$, respectively. Prove that if the quadrilaterals $ ABA_1B_1, BCB_1C_1$ and $ CAC_1A_1$ are cyclic then their circumcentres lie on the sides of $ ABC$.
1 reply
STARS
Jul 30, 2008
¬[ƒ(Gabriel)³²¹º]¼
Jul 30, 2008
Estonian Math Competitions 2005/2006
G H J
G H BBookmark kLocked kLocked NReply
Source: Seniors Problem 3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
STARS
84 posts
#1 • 1 Y
Y by Adventure10
Let $ ABC$ be an acute triangle and choose points $ A_1, B_1$ and $ C_1$ on sides $ BC, CA$ and $ AB$, respectively. Prove that if the quadrilaterals $ ABA_1B_1, BCB_1C_1$ and $ CAC_1A_1$ are cyclic then their circumcentres lie on the sides of $ ABC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
¬[ƒ(Gabriel)³²¹º]¼
347 posts
#2 • 2 Y
Y by Adventure10, Mango247
we get $ \angle C_1A_1B = \angle B_1 A_1C = \angle BAC$ and cyclic. We get $ \angle C_1A_1A = \angle C_1CA = \angle C_1BB_1 = \angle B_1A_1A$, then $ AA' \perp BC$ and cyclic, from wich the thesis.
Z K Y
N Quick Reply
G
H
=
a