Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
circle geometry showing perpendicularity
Kyj9981   3
N 4 minutes ago by JollyEggsBanana
Two circles $\omega_1$ and $\omega_2$ intersect at points $A$ and $B$. A line through $B$ intersects $\omega_1$ and $\omega_2$ at points $C$ and $D$, respectively. Line $AD$ intersects $\omega_1$ at point $E \neq A$, and line $AC$ intersects $\omega_2$ at point $F \neq A$. If $O$ is the circumcenter of $\triangle AEF$, prove that $OB \perp CD$.
3 replies
Kyj9981
Mar 18, 2025
JollyEggsBanana
4 minutes ago
Min Number of Subsets of Strictly Increasing
taptya17   5
N 6 minutes ago by kotmhn
Source: India EGMO TST 2025 Day 1 P1
Let $n$ be a positive integer. Initially the sequence $0,0,\cdots,0$ ($n$ times) is written on the board. In each round, Ananya choses an integer $t$ and a subset of the numbers written on the board and adds $t$ to all of them. What is the minimum number of rounds in which Ananya can make the sequence on the board strictly increasing?

Proposed by Shantanu Nene
5 replies
taptya17
Dec 13, 2024
kotmhn
6 minutes ago
Nice inequality
sqing   3
N 12 minutes ago by Oksutok
Source: WYX
Let $a_1,a_2,\cdots,a_n  (n\ge 2)$ be real numbers . Prove that : There exist positive integer $k\in \{1,2,\cdots,n\}$ such that $$\sum_{i=1}^{n}\{kx_i\}(1-\{kx_i\})<\frac{n-1}{6}.$$Where $\{x\}=x-\left \lfloor x \right \rfloor.$
3 replies
sqing
Apr 24, 2019
Oksutok
12 minutes ago
Inspired by 2024 Fall LMT Guts
sqing   2
N 14 minutes ago by Jackson0423
Source: Own
Let $x$, $y$, $z$ are pairwise distinct real numbers satisfying $x^2+y =y^2 +z = z^2+x. $ Prove that
$$(x+y)(y+z)(z+x)=-1$$Let $x$, $y$, $z$ are pairwise distinct real numbers satisfying $x^2+2y =y^2 +2z = z^2+2x. $ Prove that
$$(x+y)(y+z)(z+x)=-8$$
2 replies
sqing
an hour ago
Jackson0423
14 minutes ago
Solve All 6 IMO 2024 Problems (42/42), New Framework Looking for Feedback
Blackhole.LightKing   0
an hour ago
Hi everyone,

I’ve been experimenting with a different way of approaching mathematical problem solving — a framework that emphasizes recursive structures and symbolic alignment rather than conventional step-by-step strategies.

Using this method, I recently attempted all six problems from IMO 2024 and was able to arrive at what I believe are valid full-mark solutions across the board (42/42 total score, by standard grading).

However, I don’t come from a formal competition background, so I’m sure there are gaps in clarity, communication, or even logic that I’m not fully aware of.

If anyone here is willing to take a look and provide feedback, I’d appreciate it — especially regarding:

The correctness and completeness of the proofs

Suggestions on how to make the ideas clearer or more elegant

Whether this approach has any broader potential or known parallels

I'm here to learn more and improve the presentation and thinking behind the work.

You can download the Solution here.

https://agi-origin.com/assets/pdf/AGI-Origin_IMO_2024_Solution.pdf


Thanks in advance,
— BlackholeLight0


0 replies
1 viewing
Blackhole.LightKing
an hour ago
0 replies
Excircle Tangency Points Concyclic with A
tastymath75025   35
N an hour ago by bin_sherlo
Source: USA Winter TST for IMO 2019, Problem 6, by Ankan Bhattacharya
Let $ABC$ be a triangle with incenter $I$, and let $D$ be a point on line $BC$ satisfying $\angle AID=90^{\circ}$. Let the excircle of triangle $ABC$ opposite the vertex $A$ be tangent to $\overline{BC}$ at $A_1$. Define points $B_1$ on $\overline{CA}$ and $C_1$ on $\overline{AB}$ analogously, using the excircles opposite $B$ and $C$, respectively.

Prove that if quadrilateral $AB_1A_1C_1$ is cyclic, then $\overline{AD}$ is tangent to the circumcircle of $\triangle DB_1C_1$.

Ankan Bhattacharya
35 replies
tastymath75025
Jan 21, 2019
bin_sherlo
an hour ago
Domain swept by a parabola
Kunihiko_Chikaya   1
N 2 hours ago by Mathzeus1024
Source: 2015 The University of Tokyo entrance exam for Medicine, BS
For a positive real number $a$, consider the following parabola on the coordinate plane.
$C:\ y=ax^2+\frac{1-4a^2}{4a}$
When $a$ ranges over all positive real numbers, draw the domain of the set swept out by $C$.
1 reply
Kunihiko_Chikaya
Feb 25, 2015
Mathzeus1024
2 hours ago
Show that XD and AM meet on Gamma
MathStudent2002   91
N 2 hours ago by IndexLibrorumProhibitorum
Source: IMO Shortlist 2016, Geometry 2
Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$.

Proposed by Evan Chen, Taiwan
91 replies
MathStudent2002
Jul 19, 2017
IndexLibrorumProhibitorum
2 hours ago
2013 China girls' Mathematical Olympiad problem 7
s372102   5
N 3 hours ago by Nari_Tom
As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.
5 replies
s372102
Aug 13, 2013
Nari_Tom
3 hours ago
Equal angles with midpoint of $AH$
Stuttgarden   2
N 4 hours ago by HormigaCebolla
Source: Spain MO 2025 P4
Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$, satisfying $AB<AC$. The tangent line at $A$ to the circumcicle of $ABC$ intersects $BC$ in $T$. Let $X$ be the midpoint of $AH$. Prove that $\angle ATX=\angle OTB$.
2 replies
Stuttgarden
Mar 31, 2025
HormigaCebolla
4 hours ago
<DPA+ <AQD =< QIP wanted, incircle circumcircle related
parmenides51   41
N Today at 6:02 AM by Ilikeminecraft
Source: IMo 2019 SL G6
Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$.

(Slovakia)
41 replies
parmenides51
Sep 22, 2020
Ilikeminecraft
Today at 6:02 AM
Parallelity and equal angles given, wanted an angle equality
BarisKoyuncu   5
N Today at 5:53 AM by SleepyGirraffe
Source: 2022 Turkey JBMO TST P4
Given a convex quadrilateral $ABCD$ such that $m(\widehat{ABC})=m(\widehat{BCD})$. The lines $AD$ and $BC$ intersect at a point $P$ and the line passing through $P$ which is parallel to $AB$, intersects $BD$ at $T$. Prove that
$$m(\widehat{ACB})=m(\widehat{PCT})$$
5 replies
1 viewing
BarisKoyuncu
Mar 15, 2022
SleepyGirraffe
Today at 5:53 AM
Cyclic points and concurrency [1st Lemoine circle]
shobber   10
N Today at 4:47 AM by Ilikeminecraft
Source: China TST 2005
Let $\omega$ be the circumcircle of acute triangle $ABC$. Two tangents of $\omega$ from $B$ and $C$ intersect at $P$, $AP$ and $BC$ intersect at $D$. Point $E$, $F$ are on $AC$ and $AB$ such that $DE \parallel BA$ and $DF \parallel CA$.
(1) Prove that $F,B,C,E$ are concyclic.

(2) Denote $A_{1}$ the centre of the circle passing through $F,B,C,E$. $B_{1}$, $C_{1}$ are difined similarly. Prove that $AA_{1}$, $BB_{1}$, $CC_{1}$ are concurrent.
10 replies
shobber
Jun 27, 2006
Ilikeminecraft
Today at 4:47 AM
Vertices of a convex polygon if and only if m(S) = f(n)
orl   12
N Today at 4:04 AM by Maximilian113
Source: IMO Shortlist 2000, C3
Let $ n \geq 4$ be a fixed positive integer. Given a set $ S = \{P_1, P_2, \ldots, P_n\}$ of $ n$ points in the plane such that no three are collinear and no four concyclic, let $ a_t,$ $ 1 \leq t \leq n,$ be the number of circles $ P_iP_jP_k$ that contain $ P_t$ in their interior, and let \[m(S)=a_1+a_2+\cdots + a_n.\]Prove that there exists a positive integer $ f(n),$ depending only on $ n,$ such that the points of $ S$ are the vertices of a convex polygon if and only if $ m(S) = f(n).$
12 replies
orl
Aug 10, 2008
Maximilian113
Today at 4:04 AM
Ratio of circumcircle radius to incircle diameter
orl   1
N Mar 6, 2014 by tk1
Source: AIMO 2007, TST 6, P3
In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?
1 reply
orl
Jan 11, 2009
tk1
Mar 6, 2014
Ratio of circumcircle radius to incircle diameter
G H J
G H BBookmark kLocked kLocked NReply
Source: AIMO 2007, TST 6, P3
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#1 • 2 Y
Y by Adventure10, Mango247
In triangle $ ABC$ we have $ a \geq b$ and $ a \geq c.$ Prove that the ratio of circumcircle radius to incircle diameter is at least as big as the length of the centroidal axis $ s_a$ to the altitude $ a_a.$ When do we have equality?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
tk1
937 posts
#2 • 1 Y
Y by Adventure10
I will denote the centroidal axis by $\mu_a$ and the altitude by $h_a.$ We are asked to show that $\frac{R}{2r}\ge \frac{\mu_a}{h_a}.\ (1)$ However, $E=\frac{abc}{4R}=\frac{1}{2}ah_a=rs=\sqrt{s(s-a)(s-b)(s-c)},$ where $2s=a+b+c.$ Also, we know that $\mu_a^2=\frac{2b^2+2c^2-a^2}{4}.$ Therefore, $(1)$ is equivalent to

$(Rh_a)^2\ge 4r^2\mu_a^2\Leftrightarrow \frac{1}{4}b^2c^2\ge \frac{16E^2}{(a+b+c)^2}\mu_a^2 \Leftrightarrow b^2c^2(a+b+c)\ge (a+b-c)(a-b+c)(-a+b+c)(2b^2+2c^2-a^2).\ (2)$

Let $x=b/a,y=c/a;$ by the statement of the problem we have $0\le x,y\le 1$ and $1\le x+y\le 2.$ Thus, $(2)$ is equivalent to $x^2y^2(1+x+y)\ge (1+x-y)(1-x+y)(-1+x+y)(2x^2+2y^2-1),$ which can be rewritten as $2(x-y)^2(x+y-1)^3+5\left[1-(x-y)^2\right](x+y-1)(1-x)(1-y)+(1-x)(1-y)(x^3+y^3+5xy-5x-5y+4)\ge 0.\ (3)$

All we need to show now is that $f(x,y)\equiv x^3+y^3+5xy-5(x+y)+4\ge 0,$ because all other terms in $(3)$ are $\ge 0.$ But for $1\le x+y\le\frac{5}{3}$ this is obvious because $f(x,y)=(x+y-1)^3+(1-x)(1-y)\left[5-3(x+y)\right]\ge 0,$ while for $\frac{5}{3}\le x+y\le 2$ we have $f(x,y)\ge (x+y)^3-8(x+y)+9\ge \frac{8}{27}.$

Therefore $(1)$ holds under the conditions of the problem. Equality occurs when the triangle is an equilateral triangle.
Z K Y
N Quick Reply
G
H
=
a