Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Inspired by Adhyayan Jana
sqing   1
N 15 minutes ago by Roots_Of_Moksha
Source: Own
Let $a,b,c,d>0,a^2 + d^2+ad = b^2 + c^2  $ aand $ a^2 + b^2 = c^2 + d^2+cd$ Prove that $$ \frac{ab+cd}{ad+bc} =1$$
1 reply
sqing
Today at 4:35 AM
Roots_Of_Moksha
15 minutes ago
an equation from the a contest
alpha31415   1
N 18 minutes ago by Mathzeus1024
Find all (complex) roots of the equation:
(z^2-z)(1-z+z^2)^2=-1/7
1 reply
alpha31415
May 21, 2025
Mathzeus1024
18 minutes ago
Conditional geometry
Orestis_Lignos   16
N 20 minutes ago by Just1
Source: JBMO 2023 Problem 4
Let $ABC$ be an acute triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$ and let $M$ be the midpoint of $OD$. The points $O_b$ and $O_c$ are the circumcenters of triangles $AOC$ and $AOB$, respectively. If $AO=AD$, prove that points $A$, $O_b$, $M$ and $O_c$ are concyclic.

Marin Hristov and Bozhidar Dimitrov, Bulgaria
16 replies
Orestis_Lignos
Jun 26, 2023
Just1
20 minutes ago
Combi Proof Math Algorithm
CatalanThinker   3
N 24 minutes ago by NO_SQUARES
Source: Olympiad_Combinatorics_by_Pranav_A_Sriram
3. [Russia 1961]
Real numbers are written in an $m \times n$ table. It is permissible to reverse the signs of all the numbers in any row or column. Prove that after a number of these operations, we can make the sum of the numbers along each line (row or column) nonnegative.
3 replies
CatalanThinker
Today at 5:38 AM
NO_SQUARES
24 minutes ago
No more topics!
k GCD of sums of consecutive divisors
Lukaluce   3
N Apr 13, 2025 by MuradSafarli
Source: EGMO 2025 P1
For a positive integer $N$, let $c_1 < c_2 < ... < c_m$ be all the positive integers smaller than $N$ that are coprime to $N$. Find all $N \ge 3$ such that
\[gcd(N, c_i + c_{i + 1}) \neq 1\]for all $1 \le i \le m - 1$.
3 replies
Lukaluce
Apr 13, 2025
MuradSafarli
Apr 13, 2025
GCD of sums of consecutive divisors
G H J
G H BBookmark kLocked kLocked NReply
Source: EGMO 2025 P1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Lukaluce
274 posts
#1 • 3 Y
Y by farhad.fritl, cubres, aqusha_mlp12
For a positive integer $N$, let $c_1 < c_2 < ... < c_m$ be all the positive integers smaller than $N$ that are coprime to $N$. Find all $N \ge 3$ such that
\[gcd(N, c_i + c_{i + 1}) \neq 1\]for all $1 \le i \le m - 1$.
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Marius_Avion_De_Vanatoare
55 posts
#2
Y by
The only working $N$ are even numbers and powers of $3$. It is clear that for even numbers all coprime numbers are odd, and for powers of $3$ all consecutive coprime numbers are different mod 3.
Now, to show that these are the only working, if $N$ is even the problem is solved. If $N$ is odd, as $1$ and $2$ are coprime with it, we have that $N$ is divisible by 3.
Next, let $N=3^{\alpha}x$ for $x$ not divisible by 3. I will show $x$ is 1, else consider the numbers coprime with $N$ which are closest to $x$, these are either $x+1$ and $x-2$ if $x$ is 1 mod 3, or $x-1$ and $x+2$ if $x$ is 2 mod 3.
So their sum, which is either $2x-1$ if $x$ is 1 mod 3 or $2x+1$ else, which can't have a common divisor with $N$.
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tintarn
9045 posts
#3
Y by
It was posted here before.
Z Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MuradSafarli
112 posts
#4
Y by
Let’s consider two cases depending on whether \( N \) is even or odd:

Case 1: \( N \) is even.
In this case, any number coprime with \( N \) will be odd. Therefore, the sum \( C_i + C_{i+1} \) will be even, which means the GCD of \( N \) and \( C_i + C_{i+1} \) will always be greater than 1. So, the condition is satisfied for all even \( N \).

Now, let’s analyze the odd case.

Let \( C_1 = 1 \), \( C_2 = 2 \). According to the problem condition, \( \gcd(N, 3) > 1 \).
This implies \( N \) must be divisible by 3. Trying some small odd values divisible by 3, we see that \( N = 3, 9, 27 \) satisfy the condition, while \( N = 15, 21 \) do not.

So we explore two subcases:
Case 2.1: \( N = 3^a \)

In this form, every number congruent to 1 or 2 mod 3 is coprime with \( N \).
Let \( C_j = 3t + 1 \), then \( C_{j+1} = 3t + 2 \), so the sum \( C_j + C_{j+1} = 3t + 1 + 3t + 2 = 6t + 3 \), which is divisible by 3.
Similarly, for \( C_j = 3t + 2 \), we have \( C_{j+1} = 3t + 4 \), so \( C_j + C_{j+1} = 6t + 6 \), again divisible by 3.
Thus, any \( N = 3^a \), where \( a \) is a positive integer, satisfies the condition.

Case 2.2: \( N = 3^a \cdot k \), where \( \gcd(k, 3) = 1 \).
Then \( k \equiv 1 \) or \( 2 \mod 3 \).

Case 2.2.1: Let \( k \equiv 2 \mod 3 \).
Since \( N \) is odd, \( k \equiv 5 \mod 6 \), so write \( k = 6t + 5 \).
There exists an integer \( h\) such that \( C_h = 6f + 4 \).
Here, \( \gcd(6f + 4, 3) = 1 \), and \( \gcd(6f + 5, 6f + 4) = 1 \).
Then \( C_{h+1} = 6f + 7 \), and clearly \( \gcd(6f + 7, 6f + 5) = 1 \), \( \gcd(6f + 7, 3) = 1 \).
Now the sum \( C_h + C_{h+1} = 12f + 11 \).
Then,
\[
\gcd(12f + 11, N) = \gcd(12f + 11, 3^a \cdot (6f + 5)) = \gcd(12f + 11, 6f + 5)
\]\[
= \gcd(6f + 6, 6f + 5) = 1 \quad \text{(Contradiction!)}
\]
Case 2.2.2:\( k \equiv 1 \mod 3 \), i.e., \( k = 6f + 1 \).
Then take \( C_h = 6f - 1 \), and \( C_{h+1} = 6f + 2 \).
Now:
\[
\gcd(N, C_h + C_{h+1}) = \gcd(12f + 1, N) = \gcd(12f + 1, 6f + 1) = \gcd(6f, 6f + 1) = 1 \quad \text{(Contradiction!)}
\]
Final Answer:
1) \( N = 2k \), for any natural number \( k > 1 \)
2) \( N = 3^a \), for any natural number \( a \)
Z Y
G
H
=
a