Y by Adventure10, Mango247, PikaPika999, Fishheadtailbody, and 1 other user
Let
be a positive integer. Given a sequence
,
,
with
or
for each
,
,
, the sequences
,
,
and
,
,
are constructed by the following rules:
Prove that
.
Proposed by Ilya Bogdanov, Russia















![\[a_0 = b_0 = 1, \quad a_1 = b_1 = 7,\]](http://latex.artofproblemsolving.com/d/f/d/dfd49833078b6b676cd261cc358e8114b2c4b7f4.png)
![\[\begin{array}{lll}
a_{i+1} =
\begin{cases}
2a_{i-1} + 3a_i, \\
3a_{i-1} + a_i,
\end{cases} &
\begin{array}{l}
\text{if } \varepsilon_i = 0, \\
\text{if } \varepsilon_i = 1, \end{array}
& \text{for each } i = 1, \dots, n - 1, \\[15pt]
b_{i+1}=
\begin{cases}
2b_{i-1} + 3b_i, \\
3b_{i-1} + b_i,
\end{cases} &
\begin{array}{l}
\text{if } \varepsilon_{n-i} = 0, \\
\text{if } \varepsilon_{n-i} = 1, \end{array}
& \text{for each } i = 1, \dots, n - 1.
\end{array}\]](http://latex.artofproblemsolving.com/8/9/0/8908021c60992e39acdb4fcf6b587f96b88539e0.png)

Proposed by Ilya Bogdanov, Russia
This post has been edited 2 times. Last edited by djmathman, Jun 26, 2015, 11:54 PM
Reason: changed latex to match that of english version of ISL2009
Reason: changed latex to match that of english version of ISL2009